

UNIVERSIDAD NACIONAL DE LA PLATA

FACULTAD DE CIENCIAS EXACTAS DEPARTAMENTO DE CIENCIAS BIOLÓGICAS

Trabajo de Tesis Doctoral:

"Alimentos probióticos: Interacción con anticoagulantes orales"

Tesista:

Lic. Melisa Fragomeno

Director:

Dr. Pablo F. Pérez

Codirectora:

Dra. Jessica Minnaard

Año:

2024

El presente trabajo de Tesis, para optar por el grado de Doctor de la Facultad de Ciencias Exactas, fue realizado en el Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CONICET-CICPBA), bajo la dirección del Dr. Pablo F. Pérez y la codirección de la Dra. Jessica Minnaard.

Agradecimientos

A la Universidad Nacional de la Plata y a mi querida Facultad de Ciencias Exactas por la oportunidad de continuar formándome

Al CONICET por otorgarme la beca para la realización del presente trabajo

A las autoridades del CIDCA por abrirme sus puertas una vez más para continuar con mi camino en la investigación

A los Laboratorios Bagó, por la donación del acenocumarol y rivaroxabán para la realización de este trabajo

A mis directores, los Dres Pérez y Minnaard. Pablo y Jessi, gracias por su guía, sus enseñanzas y por sobre todo su calidad humana. Por trabajar muchas veces a la par mía en el laboratorio y siempre estar dispuestos a resolver cualquier duda. Gracias por el optimismo con el que siempre encararon cada reunión y discusión. Por reírse de todas mis payasadas y chistes (que fueron bastantes!). Gracias a ambos por acompañarme y comprenderme sobre todo en el final, en uno de los momentos más difíciles que me toco pasar. ¡Pupurú!

A la Dra Sabrina Assad, amiga, como vos bien dijiste, "mi hermana de tesis", que hubiese sido sin vos!

A Miguel Hermida, por su continua predisposición a la donación de sangre (no voluntaria ja!)

Al grupo de Microbiología del CIDCA, becarios, investigadores y CPAs por la ayuda, apoyo y compañía

A Aye, por ser la extraccionista número uno. Gracias por tu cariño y aguante

A Pablo Quiroga, por todo su asesoramiento en el ensayo in vivo

A Germán P., por su ayuda en la capacitación para la extracción de sangre

A la Dra. Esperanza Ruiz por su ayuda y paciencia en la realización de los ensayos de disolución.

Al Dr. Pablo Peruzzo por salvarnos más de una vez con el HPLC y siempre estar predispuesto a cualquier consulta

Al Dr. Pablo Mobili, por todos los ensayos de FTIR y su ayuda tanto en la realización como en el análisis. Gracias por generar siempre un buen clima de trabajo y por el descubrimiento del "sistema de convección forzada" que próximamente será patentado

Al Dr. Fabricio Lareu, por su ayuda con los cultivos celulares y sus consejos de biología molecular

A la Dra Cristina Añon, por su ayuda en el análisis de la proteómica

Al Dr Jack Tie y la Dra Xuejie Chen de la Universidad de Carolina del Norte por la realización de los ensayos de actividad VKOR.

A Claudio Reyes, Mariana Pennisi, Javier Lecot y Victoria Delfino, por todos los ensayos de HPLC, los buenos y los fallidos, por la buena predisposición para solucionar los (varios) problemas que tuvimos a lo largo de estos años de trabajo

A todos en la Cátedra de Micro Investigación, Ceci, Mati, Anita y María. Por ayudarme siempre, por bancarme todos los veranos y vacaciones de invierno, por convidarme mates (y muuuucha comida!), y reírse conmigo.

Al mismísimo Matias Hernan, párrafo aparte, gracias por tu amistad.

A Rober, por su asistencia en el bioterio y los ensayos in vivo

A mi único y hermoso ZOOBOX, que me recibió desde que entre al CIDCA y siguen hoy siendo una gran parte de mi vida. Los adoro incondicionalmente amigos gracias por tantos momentos compartidos y por compartir. A mis amigas Li y Sabri, por además, dejarme compartir con sus hermosas hijas.

A Doli, por sus continuas palabras de aliento y amor

A los becarios del CIDCA en su conjunto, gracias por el apoyo. Mención especial para mi compi, Agus Cipo

A mis amigos de la Cátedra de Biología de Ciencias Médicas, los quiero mucho.

A mis amigos y amigas de siempre por el aguante y el amor

A mi familia por el acompañamiento y aliento

A mi nona Carmela, llegamos vieji!

A mi hermosa prima-hermana-amiga Lu, gracias por todo, sos un gran sostén para mí

A mi viejo, por ser incentivo, motor y guía. Tu partida me deja un vacío increíble pero este logro es, sin dudas, gran parte tuyo. Tenaz defensor de la salud pública, gracias por tu legado, mi gran DOCTOR.

A mis grandísimos Palta y Santi, con quienes comparto día a día y me hacen entender el significado del amor y de la entrega. Santi, mi amor, gracias por ser mi compañero, por tu incondicionalidad y tu templanza, sin dudas me haces mejor persona. Palta, pobre de aquel que diga que un perro es solo un animal, gracias por tu cariño desinteresado. Gracias por esta familia de a tres.

Al gran pueblo argentino ¡salud!

Escaneando el siguiente código QR se encontrarán con una lista de canciones pensada para la lectura de esta tesis, muchas de las cuales también me acompañaron durante su escritura

Los resultados presentados en esta tesis se publicaron parcialmente en las siguientes instancias:

-Artículos publicados en revistas

Sabrina E. Assad, Melisa Fragomeno, Martin Rumbo, Jessica Minnaard, Pablo F. Pérez. *The immunomodulating effect of bifidobacteria is modified by the anticoagulant acenocoumarol.* Food Bioscience. Abril 2023.

doi: https://doi.org/10.1016/j.fbio.2023.102473

Melisa Fragomeno, Sabrina Assad, Pablo Mobili, Pablo J. Peruzzo, Jessica Minnaard and Pablo Fernando Perez. *Biomodification of acenocoumarol by bifidobacteria*. FEMS Microbiology Letters. Septiembre 2021.

doi: https://doi.org/10.1093/femsle/fnab125

-Resúmenes publicados en libros de congreso

Fragomeno, Melisa; Minnaard, Jessica; Pérez, Pablo F. *Interacciones entre bacterias de origen humano y medicamentos para patologías crónicas: un aporte desde la microbiología.* Póster presentado en ISME-Lat 2023 realizado en la Universidad Nacional de Quilmes, Bernal, Buenos, Argentina, entre el 07 y el 10 de agosto de 2023.

Fragomeno, Melisa; Minnaard Jessica; Pérez Pablo. *Novel insights on the effects of potential probiotic strains on acenocoumarol.* Comunicación oral presentada en XVIII Congreso Argentino de Microbiología General, SAMIGE 2022 realizado entre el 25 al 28 de octubre del corriente año en la localidad de Los Cocos, provincia de Córdoba, Argentina

Fragomeno, Melisa; Peruzzo, Pablo; Minnaard, Jessica; Pérez, Pablo F. *Implication of probiotic bacteria on acenocoumarol metabolization*. Póster presentado en el congreso conjunto SAIB-SAMIGE, Buenos Aires, Argentina. Noviembre 2021. Evento virtual

Fragomeno, Melisa; Mobili, Pablo; Minnaard, Jessica; Pérez Pablo F. *Potencial capacidad biotransformadora de bifidobacteria sobre acenocumarol*. Póster presentado en XIV Congreso Argentino de Microbiología General organizado por SAMIGE. Buenos Aires, Septiembre 2019

ÍNDICE

Abreviaturas	5
INTRODUCCIÓN GENERAL	8
1. Microbiota	9
1.2 Probióticos	12
1.2.1 Bifidobacterias y lactobacilos	16
2. Anticoagulantes orales	18
HIPÓTESIS Y OBJETIVOS	25
Bibliografía	27
CAPÍTULO 1: Interacción entre bacterias y anticoagulantes orales: Estudios in vitro	33
1. Introducción	34
2. Materiales y métodos	37
2.1 Cepas bacterianas	37
2.2 Preparación de stocks de drogas	37
2.3 Crecimiento de las bacterias con los anticoagulantes y obtención de muestras para análisis	38
2.4 Cuantificación de acenocumarol (AC) por HPLC	38
2.5 Análisis mediante espectroscopía de infrarrojos por transformada de Fourier (FTIR)	39
2.6 Ensayos funcionales- Medida del tiempo de Protrombina	39
2.6.1 Reactivo	39
2.6.2 Equipo	39
2.6.3 Plasma	40
2.6.4 Procedimiento experimental	40
3. Análisis	40
4. Resultados	41
Efecto de anticoagulantes orales sobre la viabilidad y el crecimiento de las cepas	41
Cuantificación de acenocumarol (AC) por HPLC	42
Análisis de acenocumarol (AC) y dabigatrán (DAB) por espectroscopía de infrarrojos transformada de Fourier (FTIR)	•
Ensayos funcionales	56
5. Discusión	59

6. Bibliografía	66
CAPÍTULO 2: Efecto de bacterias probióticas sobre el acenocumarol: actividad enzimática y	
disolución de comprimidos en medios biorrelevantes	71
1Introducción	72
2.Materiales y Métodos	78
2.1 Evaluación de la actividad enzimática sobre el acenocumarol	78
2.1.1 Incubación de bacterias con AC en PBS	78
2.1.2 Incubación de bacterias sonicadas con AC	78
2.1.3 Incubación de AC con bacterias sonicadas en presencia de inhibidor de proteasa.	78
2.1.3.1 Preparación del stock de inhibidor de proteasa	79
2.2 Disolución de AC en medios biorrelevantes	79
2.2.1 Preparación del medio de disolución	79
2.2.2 Preparación de los medios modificados	80
2.2.3 Ensayos en vasos individuales	80
2.2.4 Ensayo de disolución en equipo disolutor	80
2.3 Evaluación de actividad enzimática bilis hidrolasa sobre taurocolato de sodio	81
3.Análisis	81
4.Resultados	83
Ensayos de actividad enzimática sobre el acenocumarol	83
Ensayos de disolución de AC en medios biorelevantes	85
Evaluación de actividad bilis hidrolasa sobre taurocolato de sodio	89
5.Discusión	91
6.Bibliografía	95
CAPÍTULO 3: Efecto de bacterias probióticas sobre la interacción del acenocumarol con células eucarióticas	
1-Introducción	
2-Materiales y Métodos	
2.1 Pasaje de acenocumarol en células Caco-2/TC7	
2.2 Internalización de AC en células Caco-2/TC7	
2.3 PCR quantitativa (gPCR)	101

2.3.1 Obtención de muestras	101
2.3.2 Extracción de ARN	101
2.3.3 Eficiencia de extracción	102
2.3.4 Remoción del ADN remanente y retrotranscripción	102
2.3.5 PCR en tiempo real (qPCR)	103
3.Análisis	105
4.Resultados	106
Pasaje de AC a través de las monocapas de células Caco-2/TC7	106
Internalización de AC en células Caco2/TC7	108
Evaluación de la resistencia eléctrica transepitelial (TEER)	109
Análisis de expresión relativa de genes por qPCR	110
5.Discusión	113
6.Bibliografía	119
CAPÍTULO 4: Análisis del proteoma de los microorganismos en presencia de acenoc	cumarol 123
1.Introducción	124
2.Materiales y Métodos	126
2.1 Medida de proteínas totales por método de Bradford	126
2.1.1 Preparación del reactivo	126
2.1.2 Curva de calibración	126
2.1.3 Procedimiento	126
2.2 Preparación de buffers y soluciones para SDS-PAGE	127
2.3 Preparación de geles de poliacrilamida	128
2.4 Electroforesis y tinción de geles	128
2.5 Revelado	128
2.6 Preparación de muestras para la realización de la proteómica	129
2.6.1 Tinción con Coomassie Blue G-250 coloidal	129
2.7 Protocolo del Servicio de Espectrometría de Masas, CEQUIBIEM, Universida	
2.7.1 Procedimiento de tratamiento de las muestras	130
2.7.2 Configuración del equipo	130
2.7.3 Análisis de Datos	
3.Análisis	133

4.Resultados	135
5.Discusión	150
6.Bibliografía	157
CAPÍTULO 5: Evaluación de la interacción entre microorganismos probióticos y acer	nocumarol en
un modelo murino	160
1.Introducción	161
2.Materiales y métodos	164
2.1 Animales	164
2.2 Acenocumarol	164
2.3 Alimento	164
2.4 Suspensiones de las cepas bacterianas	164
2.5 Medida del tiempo de protrombina (TP)	165
2.6 Optimización del modelo murino de anticoagulación	165
2.7 Esquema experimental seleccionado	166
2.8 Análisis de la expresión relativa de genes en hígado mediante qPCR	167
2.9 Evaluación de la concentración de AC en plasma de ratón	168
3.Análisis	169
4.Resultados	170
5.Discusión	178
7.Bibliografía	185
DISCUSIÓN GENERAL	189
Bibliografía	200
CONCLUSIONES Y PERSPECTIVAS	203
CONCLUSIONES	204
PERSPECTIVAS	205
APÉNDICES	206

Abreviaturas

% p/v Porcentaje peso en volumen

% v/v Porcentaje volumen en volumen

°C Grado centígrado

AC Acenocumarol

ADNc Ácido desoxirribonucleico complementario

ARNm Ácido ribonucleico mensajero

Caco-2/TC7 Células de adenocarcinoma de colon humano, clon TC7.

DAB Dabigatrán

DMEM Medio de cultivo para células eucariotas (del inglés *Dulbecco's modified Eagle's*

minimum Essentials medium)

DMF Dimetilformamida

DO Densidad óptica

Fessif Fluido de simulación intestinal postprandial (del inglés Fed State Simulation

Intestinal Fluid)

h Horas

HEK 293 Células de riñón de embrión humano (del inglés *Human Embryonic Kidney*)

INR Razón internacional normalizada (del inglés *International Normalized Ratio*)

mg/ kg Concentración expresada en miligramos por kilo

mg/ml Concentración expresada en miligramos por mililitro

min Minutos

ml Mililitro

MRS Medio de cultivo para bacterias acido lácticas. Del nombre De Man-Rogosa-

Sharpe.

PBS Buffer fosfato salino (Del inglés *Phosphate- Buffered Saline*)

PCR: Reacción en cadena de la polimerasa (del inglés *Polymerase chain reaction*)

qPCR Reacción en cadena de la polimerasa cuantitativa (del inglés *Quantitative*

Polymerase Chain Reaction)

RIN Radio Internacional Normalizado

RIV Rivaroxabán

SDS PAGE Electroforesis en gel de poliacrilamida con dodecilsulfato de sodio.

seg Segundos

SFB Suero Fetal Bovino

TP Tiempo de Protrombina

Ufc/ml Unidades formadoras de colonia por mililitro

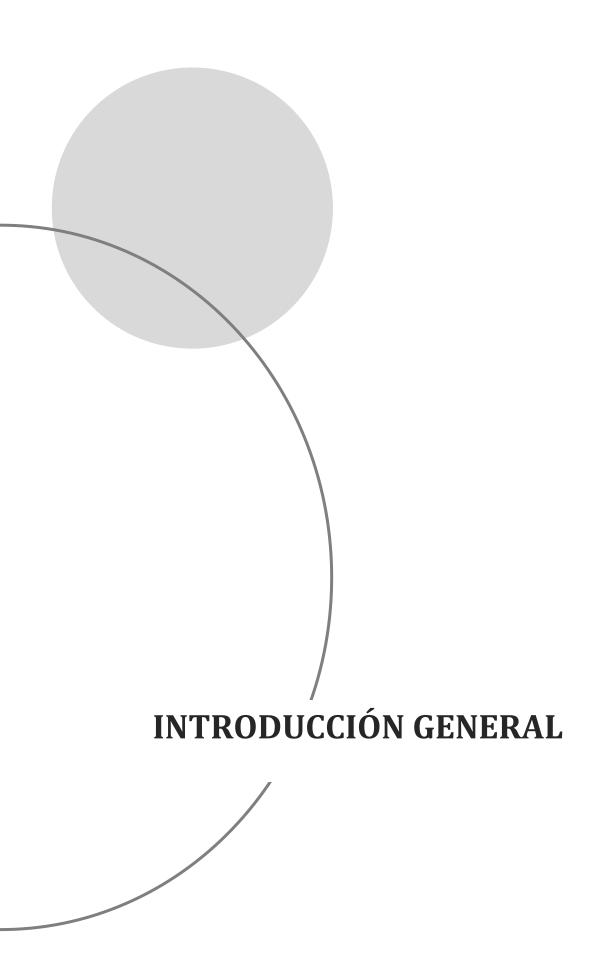
VKA Anticoagulantes antagonistas de la vitamina K (del inglés Vitamin K

Antagonists)

VKOR Enzima Vitamina K epóxido reductasa

μL Microlitro

μm Micrómetro


μM Micromolar

¿Debemos considerar el consumo de probióticos como una fuente adicional de variación en la respuesta a drogas anticoagulantes?

En la actualidad el consumo de productos probióticos se encuentra en alza. Si bien ya fueron estudiadas diversas características benéficas del consumo de estos productos, la interacción con medicamentos es un área poco explorada. En este sentido, amerita el estudio de esta relación para pacientes medicados de manera crónica con anticoagulantes orales. El presente trabajo de tesis buscó responder esta pregunta ahondando acerca de la interacción de tres cepas con potencialidad probiótica y el anticoagulante oral acenocumarol, por ser el anticoagulante que más se prescribe en nuestro país. También se delinean algunos aspectos de la interacción con dabigatrán y rivaroxabán, luz de nuestros resultados, merecen ser evaluados en profundidad. Los ensayos in vitro permitieron distinguir que, en primer lugar, todas las cepas (Bifidobacterium bifidum CIDCA 5310, B. adolescentis CIDCA 5317 y Lactobacillus acidophilus ATCC 314) tienen la capacidad de modificar el fármaco. Sin embargo, el estudio de la interacción de las bacterias con el entorno en un medio de simulación post-prandial, así como de la interacción con células intestinales humanas, demostró que los efectos fueron dependientes de la cepa considerada. Se observó que, en particular, la cepa B. bifidum CIDCA 5310 tiene la capacidad de modificar su entorno disminuyendo la disolución de los comprimidos, así como de disminuir la concentración misma aún en interacción con células epiteliales La evaluación del proteoma de las cepas en presencia del AC, otorgó valiosa información acerca de cómo la presencia de la droga era capaz de modificar la expresión de diversas proteínas, en cultivos in vitro. En este sentido, resultó interesante lo obtenido, ya que permitió abordar aspectos de la respuesta fisiológica bacteriana en presencia del xenobiótico.

A lo largo del trabajo, se posicionó como candidata a ejercer un efecto *in vivo* la cepa *B. bifidum* CIDCA 5310. Sin embargo, los resultados obtenidos en el modelo murino demostraron que esta cepa no es capaz de modificar el tiempo de protrombina de los ratones, ni la concentración plasmática de la droga. En cambio, la cepa de *L. acidophilus* ATCC 314 modificó ambos parámetros, generando una disminución del tiempo de protrombina y de la concentración de acenocumarol en plasma.

En conclusión, este trabajo demuestra por primera vez la capacidad de una cepa de lactobacilos de alterar la capacidad anticoagulante del acenocumarol y plantea la necesidad de considerar la ingesta de productos a base de estos microorganismos como un factor adicional de variabilidad que afecta la respuesta a esta droga.

1. Microbiota

El cuerpo humano convive con trillones de bacterias y otros microorganismos de forma simbiótica, denominándose microbiota al conjunto de los mismos. Los sitios de mayor colonización son la piel, el tracto gastrointestinal, la vagina y el tracto respiratorio, siendo la microbiota intestinal la que ha llamado la atención por su significancia para la homeostasis (Adak and Khan 2019). El interés por el estudio de la microbiota y sus relaciones con el huésped ha aumentado en los últimos años explorando diferentes áreas del conocimiento que incluyen la nutrición y la salud mental, así como el estudio de la interacción con fármacos.

El tracto gastrointestinal humano puede dividirse funcionalmente en: boca, esófago, estómago, intestino delgado e intestino grueso. El microambiente y propiedades distintivas de cada zona anatómica genera un balance diferencial de la microbiota (Adak and Khan 2019). A medida que se avanza en el tracto intestinal la cantidad de bacterias va en aumento pudiendo alcanzar valores de 10¹² UFC/g en el intestino grueso. Si bien en esta porción del tracto, se encuentran presentes bacterias tanto aeróbicas como anaeróbicas, la proporción de estas últimas es mayor. Este hecho se encuentra relacionado con que, a diferencia de lo que sucede en el intestino delgado, el intestino grueso presenta menor concentración de oxígeno así como menor tránsito de secreciones y alimentos, promoviendo el crecimiento bacteriano (Adak and Khan 2019). La mayoría de los microorganismos del tracto intestinal, entonces, son anaerobios estrictos y pertenecen a los fila *Bacteroidota, Bacillota y Pseudomonadota*. Además en menor medida podemos encontrar a bacterias de los fila *Actinomycetota, Acidobacteriota* o *Fusobacteriota* (Dieterich, Schink and Zopf 2018; Adak and Khan 2019; Oren and Garrity 2021; Yersin and Vonaesch 2024).

El comienzo de la colonización del tracto gastrointestinal en humanos se creía ocurría en el parto. En los últimos años, sin embargo, la teoría de una colonización in utero de los bebés ha cobrado mayor importancia demostrándose la presencia de bacterias en la placenta, cordón umbilical y fluido amniótico en partos saludables (Perez et al. 2007; Milani et al. 2017; Góralczyk-Bińkowska, Szmajda-Krygier and Kozłowska 2022). De todas maneras, la forma del parto determina gran parte de la composición de la microbiota temprana. Durante un parto vaginal los bebés se encuentran expuestos a la microbiota vaginal y fecal materna, colonizándose principalmente con bacterias del género Prevotella y Lactobacillus, incluyendo también los nuevos géneros definidos. En cambio, el nacimiento por cesárea implica que los microorganismos predominantes serán aquellos de la piel materna y del ambiente (Milani et al. 2017). Más aún, otro factor clave en el establecimiento de la microbiota es la alimentación del neonato, demostrándose diferencias en bebés alimentados con leche materna comparados con bebes alimentados con leche de fórmula maternizada (Milani et al. 2017; Zmora, Suez and Elinav 2019). Si bien la microbiota de los niños se va regularizando con el tiempo, se han encontrado diferencias sustanciales hasta los 7 años de edad según el tipo de alimentación (Milani *et al.* 2017). Cabe mencionar que, además, otros factores como la edad gestacional y los hábitos alimentarios maternos, así como factores ambientales, también impactan en la diversidad de la microbiota de los infantes (Milani *et al.* 2017).

Los procesos en los cuales se ha estudiado la participación e importancia de los microorganismos en el tracto gastrointestinal son varios, destacándose funciones de protección y metabólicas (Adak and Khan 2019). La convivencia de esta gran cantidad de microorganismos con diferentes linajes celulares del hospedador ha favorecido el desarrollo de estrategias de tolerancia a las bacterias benéficas o saprófitas que también funcionen como una defensa eficiente contra los microorganismos patógenos y el sobrecrecimiento bacteriano.

El epitelio intestinal se encuentra recubierto por mucus, lo que representa una primera barrera física de defensa Muchas bacterias tienen la capacidad de adherirse al mucus, como por ejemplo *Lacticaseibacillus rhamnosus*, así como la habilidad. de usar los proteoglicanos que lo constituyen como fuente de carbono. Esto último tiene como consecuencia la activación de las células caliciformes para producir más mucina (Dieterich, Schink and Zopf 2018; Adak and Khan 2019). Además, el epitelio intestinal tiene activa participación en la secreción de IgA y péptidos antimicrobianos. La IgA secretoria mantiene estimulado el sistema inmunológico de la mucosa intestinal contribuyendo a su adecuada homeostasis (Dieterich, Schink and Zopf 2018; Adak and Khan 2019; Góralczyk-Bińkowska, Szmajda-Krygier and Kozłowska 2022).

El microbioma presente en el intestino grueso también cumple un rol fundamental en la metabolización de componentes de la dieta que no logran ser digeridos previamente en el intestino delgado. Estos componentes son conocidos como las fibras dietarias y comprenden a los fructo-oligosacaridos (FOS), galacto-oligosacaridos (GOS), lignina y almidón entre otros (Zmora, Suez and Elinav 2019). Las bacterias presentan una gran variedad de enzimas capaces de hidrolizar estos compuestos, conocidas como enzimas activas sobre carbohidratos (CAZy por sus siglas en inglés: *Carbohydrate-Active enZymes*). Al digerir estas fibras se generan ácidos grasos de cadena corta como butirato, propionato y acetato. El butirato sirve como fuente de energía para los enterocitos colónicos y estimula a las células neuroendocrinas a secretar leptina, involucrándose así en la homeostasis energética de nuestro organismo. Más aún, estas moléculas participan en el equilibro de las células T regulatorias funcionando como agentes antiinflamatorios (Dieterich, Schink and Zopf 2018; Zmora, Suez and Elinav 2019).

Además de intervenir en el metabolismo de las fibras dietarias, las bacterias son capaces de modificar el ciclo de los ácidos biliares. Ya se ha estudiado y demostrado la presencia de enzimas como bilis hidrolasa, dehidroxilasas y epimerasas en bacterias del género *Clostridium, Clostridioides, Lactobacillus* y *Bifidobacterium*. Los ácidos secundarios generados, deoxicólico y litocolólico, (Adak and Khan 2019; Wise and Cummings 2023) son

reabsorbidos de manera pasiva para ingresar a la circulación enterohepática. Estas modificaciones son de altísima relevancia ya que los ácidos biliares y sus sales, son importantes factores luminales que influyen sobre el ciclo biológico de microorganismos intestinales (Winston 2015). Este metabolismo puede afectar además la capacidad de solubilización de las micelas de ácidos biliares impactando en la farmacocinética de ciertos fármacos con baja solubilidad (Enright 2017).

Varias patologías se han asociado a una disbiosis en el tracto digestivo y no solamente aquellas de origen gastrointestinal. Ya es sabido que un desbalance de la microbiota está asociado a afecciones como las enfermedades inflamatorias intestinales, dentro de las que se comprende la enfermedad de Crohn y colitis ulcerosa (Chen, Zhou and Wang 2021). En la actualidad, resulta muy frecuente escuchar sobre el SIBO, sobrecrecimiento bacteriano en el intestino delgado (del inglés *Small Intestine Bacterial Overgrowth*), condición que genera síntomas como diarrea, dolor abdominal y pérdida de peso. Si bien el SIBO se encuentra definido hace ya muchos años, hoy en día muchos síntomas gastrointestinales son asociados a este síndrome generando aún mucha controversia en el ámbito clínico no sólo por la necesidad de un correcto diagnóstico sino también de un tratamiento efectivo (Quigley 2014, 2019).

El eje microbiota-intestino-cerebro ha ganado mucha importancia recientemente, demostrando que varias patologías psiquiátricas podrían estar relacionadas con modificaciones de la microbiota. Resulta muy interesante este nuevo campo de estudio ya que podría contribuir a la creación de agentes farmacológicos más efectivos o incluso a la aparición de nuevas intervenciones medicinales que mejoren la calidad de vida de personas con patologías mentales (Góralczyk-Bińkowska, Szmajda-Krygier and Kozłowska 2022).

El efecto de la microbiota se extiende también al ámbito de las enfermedades oncológicas. Es de destacar que, en nuestro país, el cáncer es la segunda causa de muerte, precedida por afecciones cardíacas. En este ámbito de estudio se ha advertido que variaciones en la microbiota oral como también en la intestinal, han sido relacionadas con el cáncer colorrectal, así como ciertos microorganismos han demostrado tener efectos pro oncogénicos en cánceres asociados a hígado, vejiga y estómago (Cheng, Ling and Li 2020; Purdel *et al.* 2023).

En el entorno intestinal también es importante destacar la presencia de fármacos administrados por vía oral. Así como la microbiota tiene la capacidad de interactuar con las células de las mucosas y con los nutrientes del tracto gastrointestinal, se ha demostrado que no es un simple espectador con respecto al metabolismo de ciertos compuestos farmacológicos. El efecto de la actividad enzimática intestinal sobre fármacos ha sido reportada por varios autores (Sousa et al. 2008; Jourova, Anzenbacher and Anzenbacherova 2016; Yoo et al. 2016; Chen et al. 2022; Mindrescu et al. 2024). La relevancia clínica subyace en que los productos de estas reacciones enzimáticas pueden

generar metabolitos activos, inactivos o incluso tóxicos (Sousa et al. 2008; Yoo et al. 2016). En este mismo sentido, no solamente es importante contemplar el metabolismo bacteriano sobre una molécula en particular, sino como aquél que puede influir en las interacciones entre drogas para pacientes polimedicados. El primer antecedente de este efecto fue reportado en Japón en 1993 donde 18 pacientes murieron por la coadministración de un medicamento antiviral con un medicamento para tratamientos oncológicos, donde se vio que el metabolismo bacteriano sobre el primero generaba una molécula que inhibía el metabolismo del segundo fármaco. Como consecuencia se generaban niveles tóxicos del mismo que producían la muerte de los pacientes (Watabe, Okuda and Ogura 1997). Otro ejemplo es el uso de antibióticos que impactan fuertemente en la microbiota intestinal y pueden causar una alteración en el metabolismo de otras drogas, como se ha visto para la amlodipina y la lovastatina, dos antihipertensivos (Yoo et al. 2014, 2016). Esto muestra que la relación microbiota-fármaco es bidireccional.

Actualmente a este campo de investigación se lo denomina farmacomicrobiómica y su objetivo es lograr una buena eficacia del tratamiento farmacológico a la vez de disminuir los efectos dañinos sobre la microbiota que puedan impactar en la salud del huésped. Dentro de las maneras de modular la interacción fármaco-microbiota se encuentran la generación de nuevos sistemas de *delivery* de drogas, la administración de drogas con pre y probióticos, así como modificaciones en la dieta de los pacientes (Kamath *et al.* 2023). Si bien el transplante de microbiota fecal aún se encuentra en sus comienzos, constituye una alternativa prometedora en la modulación de la microbiota para superar desafíos asociados a la eficacia de drogas (Kamath *et al.* 2023). Es así que un estudio reveló la capacidad del transplante de microbiota fecal de decolonizar individuos de microorganismos resistentes a antibióticos mejorando su respuesta a dichas drogas (Seong *et al.* 2020). Sin embargo, debido a la gran variabilidad interindividual de la microbiota debida a factores ambientales y genéticos, aún resulta muy difícil poder establecer bases generales para controlar la interacción entre estos componentes.

1.2 Probióticos

Según la Organización Mundial de la Salud, los *probióticos* se definen como microorganismos vivos que, cuando son administrados en cantidades adecuadas confieren un beneficio para el hospedador. De esta definición queda claro que los microorganismos deben estar vivos para poder ejercer su acción benéfica, de lo contrario deberán ser definidos de una forma distinta. En el caso de los *prebióticos*, el término hace referencia a compuestos que promueven el crecimiento de bacterias benéficas en nuestro organismo. Por último y en relación a lo anteriormente mencionado, se puede definir a los *posbióticos* como microorganismos no viables y/o sus componentes que generen un efecto benéfico sobre el huésped (Salminen *et al.* 2021). Esta definición propuesta por un

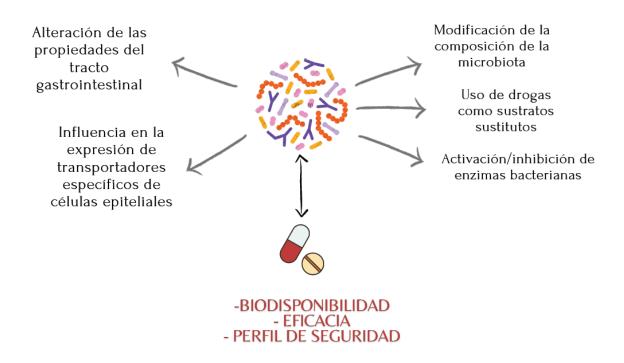
grupo de expertos de la Asociación Científica Internacional de Probióticos y Prebióticos en 2021 refleja la complejidad de este tipo de preparaciones donde no sólo se incluyen a los microorganismos no viables sino también a sus componentes como fragmentos de la pared celular, enzimas y metabolitos (Salminen *et al.* 2021; Vinderola *et al.* 2022). En nuestro país el Código Alimentario Argentino en sus artículos 1389 y 1390 establece los requisitos de denominación, seguridad e identificación comercial de los probióticos y prebióticos y los protocolos de evaluación de los mencionados ingredientes para ser utilizados en un producto alimenticio (Ministerio de Salud/ANMAT 2017).

La creciente evidencia de los beneficios provenientes de la microbiota intestinal en modular ciertos factores de riesgo a diversas enfermedades y la identificación de diferencias entre la microbiota de una persona sana y una enferma la convierte en una herramienta valiosa que ayuda tanto en el diagnóstico como tratamiento de ciertas patologías (Milani et al. 2017). Esto promovió el desarrollo de productos a base de probióticos (y también prebióticos) que influencien el desarrollo, composición y actividades de la microbiota intestinal (Milani et al. 2017). La Organización Mundial de Gastroenterología incluye tanto medicamentos, alimentos y suplementos dietarios dentro de las posibles formulaciones probióticas. Uno de los objetivos del consumo de bacterias probióticas es el de repoblar el tracto gastrointestinal con bacterias benéficas que le confieran propiedades positivas al hospedador (Zmora, Suez and Elinav 2019). Dentro de estos microorganismos, los más ampliamente utilizados son los género *Bifidobacterium* pertenecientes tanto al como Lactobacillus los géneros recientemente definidos) y Bacillus, así como también levaduras del género Saccharomyces (Plaza-Diaz et al. 2019; Yousefi et al. 2019; Zheng et al. 2020).

Es importante destacar que los estudios de los efectos benéficos de ciertos microorganismos deben ser analizados de manera cepa-especifica sin posibilidad de extrapolación a otros géneros/especies/cepas (Bubnov *et al.* 2018; Ji *et al.* 2019). Además, las formulaciones probióticas disponibles comercialmente pueden contener más de un microorganismo benéfico apelando a efectos complementarios e incluso sinérgicos de la ingesta combinada (Purdel *et al.* 2023).

Dentro de estos efectos benéficos podemos mencionar el efecto barrera frente a microorganismos patógenos, inmunomodulación y producción de factores como vitaminas o ácidos grasos de cadena corta (Gibson and Wang 1994; Pérez *et al.* 1998; Guarner Francisco 2003; Yousefi *et al.* 2019). Por otro lado, varios estudios han demostrado que las enfermedades inflamatorias intestinales (dentro de las que se encuentran la enfermedad de Crohn, colitis ulcerosa y otras afecciones inflamatorias) se caracterizan por una disbiosis intestinal y pérdida de bacterias como lactobacilos y bifidobacterias (Bai and Ouyang 2006). En este escenario se ha evaluado la administración de probióticos a estos pacientes para restaurar la homeostasis, observándose una mejoría de los síntomas inflamatorios (Guandalini 2002; Schultz, Schölmerich and Rath 2003; Bai

and Ouyang 2006). El uso de probióticos en otras patologías digestivas como diarreas agudas, nosocomiales y asociadas a antibióticos, así como también en ciertas alergias como la dermatitis atópica, ha demostrado una mejoría de la sintomatología asociada (Plaza-Diaz et al. 2019). Más aún, podemos destacar la utilización de probióticos en la prevención de enfermedades causadas por bacterias patógenas, gracias a la secreción de bacteriocinas específicas que inhiben el crecimiento de, por ejemplo, *C. difficile, Shigella y E. coli* (Plaza-Diaz *et al.* 2019). También se han creado formulaciones conteniendo microorganismos probióticos que han demostrado tener capacidad de reducir el colesterol en modelos animales (Tsai *et al.* 2014).


Los mecanismos moleculares por los cuales los probióticos ejercen su efecto benéfico son múltiples y se encuentran en constante estudio, pero ya se conocen varios de ellos dentro de los que podemos destacar: efecto barrera frente a patógenos, adherencia al epitelio intestinal, aumento de la expresión de moléculas de unión intercelular como claudina y ocludina que permiten mantener la integridad de la barrera intestinal, modulación de la respuesta inmune celular y secreción de productos antimicrobianos (Bai and Ouyang 2006). Además, otro mecanismo de acción asociado a efectos benéficos es el de síntesis de enzimas y metabolitos como por ejemplo neurotransmisores (GABA) y competencia con microorganismos patógenos por nutrientes (Purdel *et al.* 2023).

Los productos probióticos disponibles actualmente son en su mayoría a base de lácteos, ya que la leche es una excelente matriz nutricional y energética para el desarrollo de los microorganismos. Dentro de estos productos encontramos al yogurt y leches fermentadas. Además, varios laboratorios ya comercializan cápsulas conteniendo una cantidad conocida de microorganismos liofilizados, algunas de las cuales también son suplementadas con vitaminas. Los cambios de hábitos alimentarios durante las últimas décadas han impulsado a las industrias a reformular ciertos productos. Los consumidores vegetarianos y veganos, principalmente, así como las personas intolerantes a la lactosa fueron los principales motores de la búsqueda de productos probióticos no lácteos (Küçükgöz and Trząskowska 2022). No menor, la búsqueda de nuevas matrices también está impulsada por el objetivo de reducir el impacto medioambiental de los procesos productivos. De esta manera se abrió un abanico de opciones e investigaciones contemplando productos a base de cereales y frutas que satisfagan esta demanda (Küçükgöz and Trząskowska 2022).

En este sentido, es importante mencionar que no todos los alimentos fermentados son probióticos. Los productos fermentados, definidos como "alimentos y bebidas producidos a través de un crecimiento microbiano controlado, y la conversión de componentes alimenticios a través de acciones enzimáticas", se utilizaron originalmente como un método de preservación de alimentos (Dimidi *et al.* 2019). Hoy en día forman parte de la cocina de la mayoría de las culturas del mundo.

Ciertos alimentos fermentan de manera natural como el chucrut, y otros se generan gracias a la adición de un "starter" como el kéfir y la kombucha. Dado que el proceso de fermentación está influenciado por numerosas variables, los productos generados son altamente heterogéneos. Los alimentos fermentados contienen bacterias benéficas que logran llegar al tracto gastrointestinal en altas concentraciones así como también la posibilidad de ejercer efectos positivos a través de metabolitos generados por la fermentación, que pueden funcionar a su vez como prebióticos (Dimidi et al. 2019). Pero tanto la cantidad como balance de los microorganismos en estos productos es muy variable, así como también la viabilidad de los mismos. De esto se desprende que no es posible extrapolar los conceptos de alimentos probióticos con los fermentados.

Como un consumo regular de alimentos probióticos se indica en ciertas patologías como ya hemos mencionado previamente, la ingesta concomitante con medicamentos puede ser inevitable. En este sentido, los datos respecto a la interacción de estos componentes son aún limitados a pesar de la creciente popularidad de estos alimentos. Sin embargo, como se ha presentado anteriormente, es sabido que los microorganismos tienen la capacidad de alterar la farmacocinética de ciertas drogas afectando su biodisponibilidad y en algunos casos, también la farmacodinamia. Varias enzimas ya han sido reportadas con capacidad de modificar fármacos (Stojančević et al. 2014; Walsh et al. 2018; Liu et al. 2021). Estudios realizados en humanos, en modelos animales o en cultivos in vitro con diferentes drogas demuestran que los microorganismos probióticos tienen la capacidad de interactuar con varias moléculas de fármacos. Dentro de éstas podemos encontrar fármacos antihipertensivos, antiinflamatorios, inmunosupresores y fármacos que afectan el sistema nervioso central (Purdel et al. 2023). Los mecanismos propuestos para dicha interacción se resumen en la figura 1.

Figura 1. Mecanismos propuestos para la interacción de la microbiota y los medicamentos Adaptado de Purdel (Purdel *et al.* 2023)

Teniendo en cuenta los antecedentes mencionados previamente, en este trabajo de tesis se propuso trabajar con cepas provenientes de dos géneros ampliamente utilizados en la elaboración de productos probióticos, cuyas características se detallan a continuación.

1.2.1 Bifidobacterias y lactobacilos

En 1899 Henry Tissier aísla por primera vez bacterias gram positivas, con forma curva o de "Y" de materia fecal de neonatos sanos alimentados con leche materna, a las que llamo *Bacillus bifidus comunis*, que hoy conocemos como bifidobacteras (Tissier 1900). Desde ese entonces, se han logrado aislar este mismo tipo de bacterias de otras fuentes como insectos, el tracto gastrointestinal de varios mamíferos así como también del kéfir de agua (Ventura *et al.* 2004; Klijn, Mercenier and Arigoni 2005; Laureys *et al.* 2016). En nuestro grupo de investigación se aislaron bifidobacterias de materia fecal de bebes de entre 6 días y 4 meses de vida, obteniéndose así gran parte de la colección de cepas que posee en forma conjunta el CIDCA y la cátedra de Microbiología General FCE, UNLP (Pérez *et al.* 1998; Gomez Zavaglia *et al.* 1998).

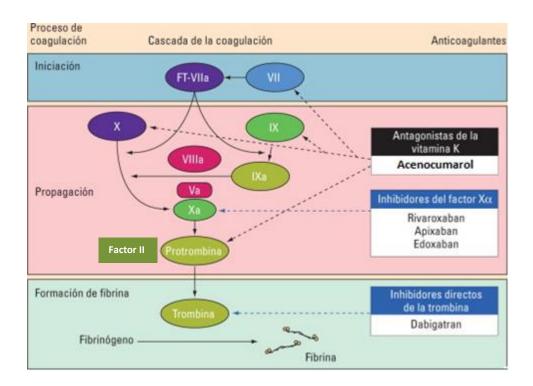
Las bifidobacterias son las principales colonizadoras del tracto gastrointestinal de lactantes alimentados con leche materna. Durante la vida adulta, la proporción de estos microorganismos decrece manteniéndose estable hasta la vejez donde nuevamente se ve disminuida (Arboleya *et al.* 2016). Más aún, se describió el cambio de diferentes especies

de bifidobacterias con la edad, siendo por ejemplo *B. bifidum* predominante en neonatos y *B. adolescentis* en adultos (Arboleya *et al.* 2016).

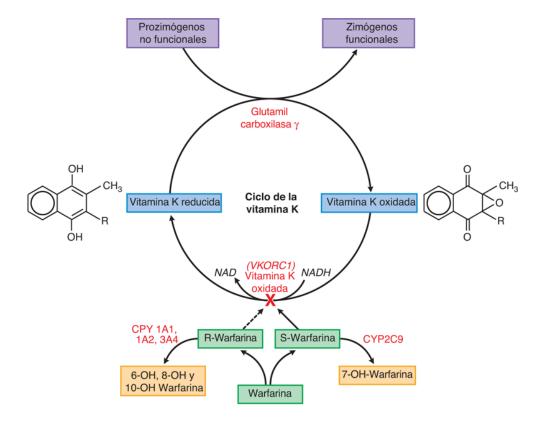
Las bacterias ácido-lácticas (LAB) son un grupo heterogéneo de bacterias Gram positivas, no esporuladas, cuya característica principal es su capacidad de producir ácido láctico a partir de carbohidratos, lo que las hace útiles para la producción de ciertos alimentos fermentados, como por ejemplo el yogurt. Estas bacterias habitan una gran cantidad de nichos ecológicos (Bull et al. 2013). Dentro de este grupo encontramos al género Lactobacillus, que forma parte del microbioma humano, encontrándose en el tracto gastrointestinal, respiratorio y vaginal (Bull et al. 2013; O'Callaghan and O'Toole 2013). Más aún, dentro de este género, hasta marzo del 2020 se habían descripto ya 261 especies (Zheng et al. 2020) y además, la existencia de un alto nivel de heterogeneidad genética intra-específica (O'Callaghan and O'Toole 2013). Es por esto que se necesitó realizar un cambio en la clasificación de estos microorganismos ya que no todos podían agruparse dentro del mismo género, dividiéndose así en Lactobacillus y Paralactobacillus, además de incorporar otros 23 nuevos géneros: Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacillus, Schleiferilactobacillus, Loigolactobacillus, Lacticaseibacillus, Latilactobacillus, Dellaglioa, Liquorilactobacillus, Ligilactobacillus, Lactiplantibacillus, Furfurilactobacillus, Paucilactobacillus, Limosilactobacillus, Fructilactobacillus, Acetilactobacillus, Apilactobacillus, Levilactobacillus, Secundilactobacillus y Lentilactobacillus (Zheng et al. 2020). En el presente trabajo de tesis el término lactobacilo se utiliza de manera genérica si bien se conoce esta nueva modificación en la clasificación taxonómica.

El grupo *L. acidophilus* es uno de los mejor definidos y filogenéticamente de los más ramificados comprendiendo a distintas especies como *L. acidophilus, L. helveticus, L. gasseri y L. johnsonii* (Bull *et al.* 2013; O'Callaghan and O'Toole 2013). Así como para el caso de las bifidobacterias, el primer aislamiento documentado de *L. acidophilus* data del 1900 y también de materia fecal de lactantes (O'Callaghan and O'Toole 2013). Como resultado de su uso histórico en la elaboración de alimentos fermentados, estas bacterias se han posicionado en la industria utilizándose en una gran variedad de productos alimenticios (Bull *et al.* 2013). Estos microorganismos tienen carácter GRAS, por sus siglas en inglés *Generaly Regarded As Safe*, acorde a los criterios de la FDA (*Food and Drug Administration*, EEUU) (Bull *et al.* 2013).

Como ya se mencionó, tanto las bifidobacterias como los lactobacilos han sido ampliamente estudiados y empleados por su capacidad probiótica. En el presente trabajo se han utilizado dos cepas de bifidobacterias y una de lactobacilo. Ambas cepas de bifidobacterias pertenecen a la colección del CIDCA, *B. bifidum* CIDCA 5310 y *B. adolescentis* CIDCA 5317, de ahora en más referidas como CIDCA 5310 y CIDCA 5317. Estas fueron aisladas de materia fecal de bebés sanos y distinguidas en base a su perfil de fermentación de azúcares, presencia de la enzima fructosa-6-P fosfocetolasa y perfil de


proteínas por SDS-PAGE (Gomez Zavaglia *et al.* 1998). Paralelamente, fueron caracterizadas por sus propiedades superficiales encontrándose que la cepa CIDCA 5310 era autoaglutinante, hemaglutinante, adherente al vidrio y a células Caco-2, mientras que la cepa CIDCA 5317 presentaba características totalmente opuestas (Pérez *et al.* 1998). Por otro lado, en cuanto a la cepa de lactobacilo, se utilizó la cepa de referencia de la *American Type Culture Collection* (ATCC), *Lactobacillus acidophilus* (Moro) Hansen and Mocquot (ATCC 314), de ahora en más referida como ATCC 314.

Si bien ya son conocidos casos de interacción entre bacterias probióticas y fármacos, como se expuso anteriormente, los estudios acerca de anticoagulantes orales y estas bacterias representan un área de gran relevancia y aún muy poco explorada. Teniendo en cuenta la creciente demanda de conocimiento por parte de la industria alimentaria, así como de los consumidores de productos probióticos, el incremento de pacientes medicados con anticoagulantes orales y de la interacción entre los medicamentos y componentes de la dieta, se torna necesario profundizar los estudios sobre dicha interacción.


2. Anticoagulantes orales

Los anticoagulantes orales son drogas ampliamente utilizadas y con gran eficacia en el manejo de eventos trombóticos en enfermedades venosas y arteriales, previniendo así por ejemplo la aparición de cuadros más graves como accidentes cerebrovasculares (ACV) isquémicos e insuficiencias cardíacas (Alcaraz Andrea, Balán Darío 2021; Ceresetto *et al.* 2022).

Dentro de este grupo encontramos varios fármacos y podemos clasificarlos en: anticoagulantes orales directos (DOACs de su sigla en inglés Direct Oral Anticoagulants) y los indirectos o clásicos (abreviados simplemente como OAC, Oral Anticoagulants o VKA por Vitamin K Antagonists). Dentro de la primera categoría se encuentran aquellas moléculas que, como su nombre lo indica, son capaces de inhibir directamente a algún factor en la cascada de coagulación como la trombina (factor IIa) o el factor Xa. Entre ellas encontramos al Rivaroxabán, Apixabán, Edoxabán y al Dabigatrán. Dentro de los VKA encontramos a los derivados de las cumarinas, moléculas que al antagonizar el efecto de la vitamina K, alteran la cascada de coagulación ya que previenen la carboxilación y activación de los factores II, VII, IX, X y de las proteínas C y S, todos dependientes de dicha vitamina (López de Luca et al. 2006; Páramo 2012) (Figura 2). Específicamente el sitio diana de estos anticoagulantes es la enzima vitamina K epóxido reductasa (VKOR), enzima clave en el ciclo de la vitamina K, cuyo producto de reacción es una forma reducida de esta vitamina que es necesaria como cofactor en la carboxilación a los residuos de glutamina de los factores de coagulación antes mencionados (López de Luca et al. 2006; Montes et al. 2008; Tie and Stafford 2008) (Figura 3).

Figura 2. Esquema de la cascada de la coagulación y los diferentes anticoagulantes que intervienen. Las flechas color **negro** indican efecto indirecto sobre los factores de coagulación. Las flechas color **azul** indican efecto directo. Imagen adaptada de Páramo (Páramo 2012).

Figura 3. Mecanismo de acción de los anticoagulantes orales cumarínicos ejemplificado con warfarina. Extraída de Goodman y Gilman (Goodman and Gilman 2018).

Si bien en el presente trabajo de tesis se ha ahondado en el estudio del anticoagulante acenocumarol, también se realizaron ensayos utilizando al dabigatrán y rivaroxabán. El acenocumarol es un antagonista de la vitamina K, el dabigatrán es un inhibidor directo de la trombina y el rivaroxabán un inhibidor del factor Xa. Estos tres fármacos tienen igual vía de administración y forma farmacéutica, ya que se comercializan como comprimidos que se administran por vía oral.

Para determinar la efectividad del tratamiento con VKAs se realiza el cálculo del RIN o Razón Internacional Normalizada, mediante la siguiente fórmula:

$$RIN = \frac{TP \ paciente}{TP \ pool \ plasmas \ normales}$$

Siendo,

TP: Tiempo de protrombina

ISI: Índice de sensibilidad internacional

Esta fórmula fue generada a partir de la necesidad de estandarizar los diferentes tipos de tromboplastinas (factor tisular), independientemente de su origen. Al extraerse industrialmente de cerebro, pulmón o placenta, puede presentar diferentes sensibilidades a los factores de la cascada de coagulación, lo que generaría una variación en el TP que no se correlacionaría con el estado real del paciente. A menor sensibilidad de la tromboplastina, mayor es el error que se puede cometer en la detección del grado de anticoagulación para obtener un rango terapéutico. A partir de esto, se genera el ISI, que cada fabricante debe declarar para la comercialización de su tromboplastina, y el cálculo se realiza teniendo en cuenta la tromboplastina de referencia según la Organización Mundial de la Salud, que presentará un valor de 1 (Dinorah Mulet Batista *et al.* 2012).

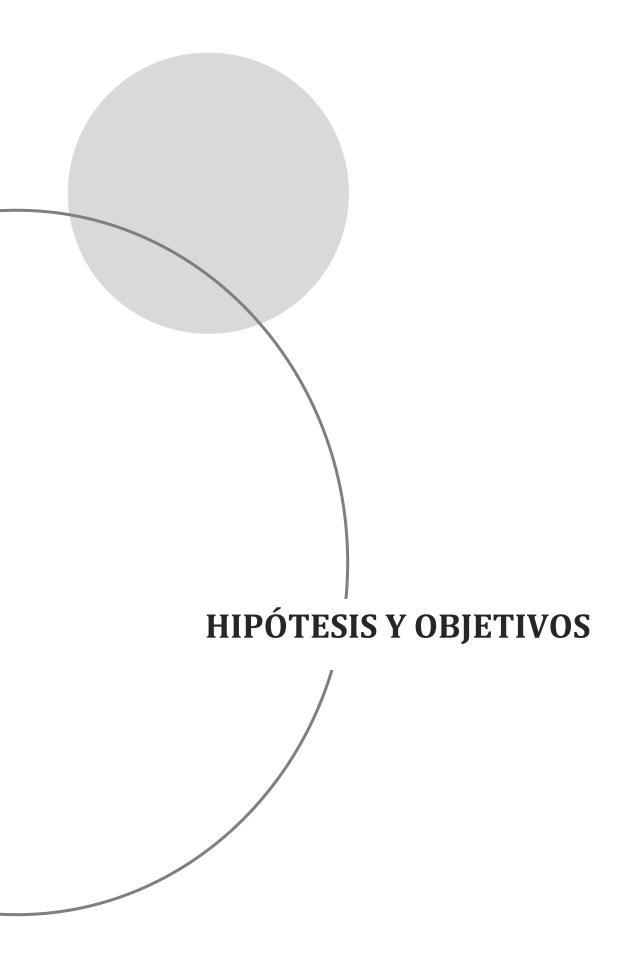
En un paciente no anticoagulado el RIN es cercano a 1, mientras que este valor va en aumento en pacientes bajo tratamiento con anticoagulantes. Para la warfarina, otro VKA, y para el acenocumarol, la dosificación se establece de tal manera de mantener el RIN en valores entre 2 y 3 (Alcaraz Andrea, Balán Darío 2021). Teniendo esto en cuenta y considerando que la sensibilidad al anticoagulante puede variar durante el tratamiento, es necesario contar con un control asiduo y riguroso del RIN del paciente. Estos controles cobran especial relevancia dada la capacidad que tienen ambos fármacos de interactuar con componentes de los alimentos. Dentro de estas restricciones dietarias de los pacientes medicados con estos fármacos cabe destacar a los alimentos ricos en vitamina K como el brócoli y la palta (en altas cantidades) que generan un efecto inhibitorio de la acción farmacológica, así como por el contrario frutas como el mango o el jugo de uvas han sido reportadas como potenciadoras del efecto de la warfarina (Holbrook et al. 2005). Por otro lado, no es menor contemplar el uso de hierbas medicinales concomitantemente con fármacos. Un estudio publicado por Ge y colaboradores (Ge, Zhang and Zuo 2014) indicó que el 40 % de los pacientes con patologías cardiovasculares consumen hierbas medicinales, presentándose como una de las mayores causas de interacción en los tratamientos anticoagulantes. En este sentido, por ejemplo, se describió que la manzanilla presentaba un alto grado de interacción potenciando el efecto anticoagulante pudiendo generar hemorragias severas e inclusive la muerte (Ge, Zhang and Zuo 2014).

Los DOACs han surgido de manera posterior a los VKA, si bien estos últimos siguen siendo utilizados en gran medida, principalmente en Argentina y Europa (Gschwind *et al.* 2013; Militaru *et al.* 2015). El uso de los DOACs se ha incrementado en los últimos años frente a los VKA, estimándose que en Argentina el porcentaje de personas que utilizan estos medicamentos es cercano al 30 % (Ceresetto *et al.* 2022). La principal ventaja que ofrecen los DOACs es que no requieren un ajuste de dosis con determinación de laboratorio ya que tienen un efecto más predecible, por lo que se evitan controles frecuentes y por otro lado se encuentra la facilidad en la toma de una dosis fija sin interferencias con la dieta (Ceresetto *et al.* 2022). En conjunto, estas razones lo posicionarían mejor frente a los antagonistas de la vitamina K. Como contraparte, si tenemos en cuenta los antídotos de los anticoagulantes planteados, ante eventos hemorrágicos los VKA necesitan

simplemente una alta dosis de vitamina K, preferentemente administrada por vía endovenosa, de fácil acceso en los centros de salud (Thomas and Makris 2017). En cambio, dentro del grupo de los DOACs, el dabigatrán es el único que cuenta con un antídoto aprobado y comercializado en nuestro país desde el 2017 (Alcaraz Andrea, Balán Darío 2021), un anticuerpo monoclonal comercializado bajo el nombre de Idarucizumab (Thomas and Makris 2017; Giannandrea et al. 2019), cuyo costo es muy elevado. El rivaroxabán no cuenta aún con un antídoto específico, sino que se aconseja descontinuar el fármaco o espaciar las dosis frente a sangrados indeseados (Thomas and Makris 2017). En un comunicado emitido por la FDA en 2018 con respecto a la actualización sobre los riesgos de sangrado asociados al uso de dabigatrán, se comparó el uso de esta droga versus warfarina en un grupo de 134000 pacientes mayores de 65 años. Los resultados mostraron que el uso de dabigatrán presentaba un menor riesgo de accidente cerebrovascular isquémico, mientras que el riesgo de sangrado gastrointestinal era mayor con respecto a la warfarina. En cuanto al riesgo de producir un infarto agudo de miocardio ambos fármacos presentaban un riesgo similar (Food and Drug Administration 2018).

El dabigatrán (DAB) es administrado como prodroga, dabigatrán etexilato, debido a la gran polaridad y naturaleza zwiteriónica del compuesto activo lo que deviene en una baja biodisponibilldiad oral. La prodroga, en cambio, presenta una rápida absorción por vía oral, alcanzando la concentración plasmática máxima luego de 2 h de administración (Stangier 2008). La conversión de dabigatrán etexilato a dabigatrán se realiza gracias a varias esterasas del huésped que se encuentran tanto en intestino como en hígado y plasma. Esta enzima se caracteriza por tener un gran poder catalítico con baja especificidad de sustrato, lo que genera que esta droga sea menos propensa a presentar interacciones con otros fármacos o con alimentos (Blech *et al.* 2008). Para este compuesto, las enzimas del citocromo P450 no juegan un rol relevante siendo el dabigatrán el principal metabolito excretado por orina (Blech *et al.* 2008; Stangier 2008). Como contraparte de este punto, su dosificación se dificulta en personas de edad avanzada o con insuficiencia renal (Ordovás Baines *et al.* 2009).

El rivaroxabán (RIV) fue aprobado en el 2011 por la FDA para la prevención de ataque cerebrovascular y embolismo sistémico en pacientes con fibrilación auricular no valvular, profilaxis de episodios tromboembólicos venosos en pacientes adultos sometidos a cirugía de reemplazo total de cadera o rodilla, y para el tratamiento de la trombosis venosa profunda (TVP) y la embolia pulmonar (EP) en adultos (Jara, Garafoni and Speranza 2022). Es un potente inhibidor del factor Xa cuya dosificación puede llegar hasta 20 mg/día, siendo lo más habitual 10 mg/día (Goodman and Gilman 2018). Se metaboliza por vía hepática por las enzimas del citocromo P450, siendo las isoformas Cyp3a4 y Cyp2j2 las más relevantes, así como también una proporción del fármaco se excreta inalterado por orina (Ordovás Baines *et al.* 2009; Jara, Garafoni and Speranza 2011). Presenta interacciones con otros fármacos que puedan inhibir o potenciar la actividad de dichas


enzimas, pero no presenta contraindicaciones dietarias como los VKAs (Chaves Brenes 2014).

El acenocumarol (AC) se presenta como una mezcla racémica de sus dos enantiómeros (R) y (S). Debido a la rápida metabolización de la forma (S), el efecto terapéutico se asocia casi en su totalidad a la forma (R) (Tassies et al. 2002). En relación a su dosificación, inicialmente y siempre dependiendo del cuadro del paciente, se sugiere dos días de tratamiento con dosis diaria de 8 a 12 mg y 4 a 8 mg, para el primer y segundo día, respectivamente. La dosis de mantenimiento se ajusta de acuerdo a los valores de RIN del paciente y se establece una dosis total semanal distribuida homogéneamente (Goodman and Gilman 2018). La droga se absorbe rápidamente y alcanza una concentración plasmática máxima entre 1-3 h. Presenta un elevado porcentaje de unión a proteínas plasmáticas y su metabolización es hepática, principalmente llevada a cabo por el citocromo P4502C9 (Cyp2c9) y en menor medida por los citocromos Cyp1a2 y Cyp2c19 (Tassies et al. 2002; Ufer 2005). El principal metabolito formado es el hidroxiacenocumarol pero también se forma un derivado con un grupo alcohol y amino/acetamino acenocumarol (Thijssen et al. 1984; Tassies et al. 2002). Es interesante en este contexto, remarcar que este último derivado de la droga se genera gracias a la acción enzimática de la microbiota intestinal, pero debido a la rápida absorción de la forma farmacéutica, las cantidades formadas son despreciables, a menos que por algún motivo se encuentre retrasado dicho proceso (Thijssen et al. 1984). En cuanto a la metabolización llevada a cabo por la isoforma 2c9 del citocromo P450, se estudió la influencia de los polimorfismos genéticos de esta enzima concluyéndose que no todas las variantes alélicas presentaban la misma actividad metabólica lo que influía en la dosis requerida para establecer el tratamiento anticoagulante y la posibilidad de ocurrencia de hemorragias (Tassies et al. 2002). Actualmente este campo de investigación llamado farmacogenómica apunta a brindar tratamientos individualizados para maximizar su eficacia y reducir efectos adversos.

Como se mencionó anteriormente, dado que el AC presenta un estrecho margen terapéutico, los pacientes en tratamiento con esta droga deben ser monitoreados frecuentemente para corregir, de ser necesario, la dosis administrada (Trejo I. 2004; Keeling 2017). Además del polimorfismo en los genes involucrados en su metabolismo, varios factores intra- e interindividuales como el peso corporal, el sexo y la edad afectan la respuesta al tratamiento anticoagulante (Wadelius *et al.* 2004; Saraeva *et al.* 2007; Militaru *et al.* 2015; Cullell *et al.* 2020). Es interesante destacar que en este mismo sentido se estudió la influencia de las variaciones alélicas de la enzima diana del acenocumarol, la VKOR, encontrándose que sus polimorfismos no tenían tanta incidencia en los ajustes de dosis como las variantes del citocromo 2c9 (Chen *et al.* 2018).

Este trabajo de tesis se centró en la interacción de bacterias potencialmente probióticas y anticoagulantes orales, siendo el acenocumarol la droga más estudiada por su alto grado

de prescripción actual en nuestro país. Ya en 1992, Conly y colaboradores (Conly 1992) habían descripto la relevancia de la microbiota intestinal en la producción de vitamina K, y como una modificación de la misma por el uso de antibióticos de amplio espectro podía resultar en una disminución de la concentración de dicha vitamina alterando el tratamiento anticoagulante, y con ello producir hemorragias severas (Stojančević *et al.* 2014). No obstante, los estudios sobre la relación entre microorganismos probióticos y drogas anticoagulantes fueron aún poco explorados, requiriéndose profundizar el trabajo en esta área para brindar mayores elementos de juicio al personal sanitario y satisfacer los requerimientos de los pacientes y consumidores de alimentos a base de probióticos.

El *objetivo general* de la presente tesis es determinar el efecto de la interacción entre microorganismos probióticos y fármacos en el ambiente intestinal.

Se propone entonces la siguiente *hipótesis* de trabajo: La actividad de los anticoagulantes orales es modificada por microorganismos probióticos.

Para poner a prueba la hipótesis planteada se describen los siguientes *objetivos específicos*:

- 1. Estudiar, *in vitro*, los efectos de las bifidobacterias y lactobacilos sobre el acenocumarol, el dabigatrán y el rivaroxabán.
- 2. Estudiar el efecto de la dotación enzimática bacteriana sobre el acenocumarol y su relación con la disolución de la droga en su forma farmacéutica.
- 3. Evaluar, en presencia de bacterias probióticas, la distribución de la droga y la expresión de citocromos, en un modelo de células epiteliales Caco-2/TC7.
- 4. Estudiar el efecto del acenocumarol sobre el proteoma de las tres cepas bacterianas.
- 5. Evaluar, *in vivo*, en animales a los que se administraron las bacterias en estudio y acenocumarol, la actividad anticoagulante, concentración plasmática de la droga y la expresión de enzimas relacionadas con el metabolismo hepático.

Bibliografía

- Adak A, Khan MR. An insight into gut microbiota and its functionalities. *Cell Mol Life Sci* 2019;**76**:473–93.
- Alcaraz Andrea, Balán Darío GJM. Anticoagulantes orales directos en la fibrilación auricular no valvular. Com Nac EVALUACIÓN Tecnol SALUD (CONETEC), Minist Salud la Nación 2021:50.
- Arboleya S, Watkins C, Stanton C, Ross RP. Gut bifidobacteria populations in human health and aging. *Front Microbiol* 2016;**7**, DOI: 10.3389/fmicb.2016.01204.
- Bai AP, Ouyang Q. Probiotics and inflammatory bowel diseases. Postgrad Med J 2006;82:376-82.
- Blech S, Ebner T, Ludwig-Schwellinger E, Stangier J, Roth W. The metabolism and disposition of the oral direct thrombin inhibitor, dabigatran, in humans. *Drug Metab Dispos* 2008;**36**:386–99.
- Bubnov R V., Babenko LP, Lazarenko LM, Mokrozub V V., Spivak MY. Specific properties of probiotic strains: relevance and benefits for the host. *EPMA J* 2018;**9**:205–23.
- Bull M, Plummer S, Marchesi J, Mahenthiralingam E. The life history of Lactobacillus acidophilus as a probiotic: A tale of revisionary taxonomy, misidentification and commercial success. *FEMS Microbiol Lett* 2013;**349**:77–87.
- Ceresetto JM, Tajer C, Duboscq C, Bottaro F, Casais P, Korin J, Fondevila C, Giumelli C, Scazziota A, Rossi A, Botto F, Ariscancela ME, Martinuzzo M, Zaidel E, Maurice MF, Bahit C, Vazquez F, Molnar S, Saizberg S *et al.* Recomendaciones de manejo de los anticoagulantes orales directos (DOACS) ANTI XA Y ANTI IIA. *Supl II* 2022;**82**:1–55.
- Chaves Brenes L. Nuevos Anticoagulantes en Cardiología. *Rev Costarr Cardiol* 2014;**Volumen 1**:17–22.
- Chen W, Qian J, Fu J, Wu T, Lv M, Jiang S, Zhang J. Changes in the Gut Microbiota May Affect the Clinical Efficacy of Oral Anticoagulants. *Front Pharmacol* 2022;**13**, DOI: 10.3389/fphar.2022.860237.
- Chen X, Jin DY, Stafford DW, Tie JK. Evaluation of oral anticoagulants with Vitamin K epoxide reductase in its native milieu. *Blood* 2018;**132**:1974–84.
- Chen Y, Zhou J, Wang L. Role and Mechanism of Gut Microbiota in Human Disease. *Front Cell Infect Microbiol* 2021;**11**:1–12.
- Cheng Y, Ling Z, Li L. The Intestinal Microbiota and Colorectal Cancer. *Front Immunol* 2020;**11**:1–13.
- Cullell N, Carrera C, Muiño E, Torres-Aguila NP, Cárcel-Márquez J, González-Sánchez J, Gallego-Fabrega C, Molina J, Besora S, Sotoca J, Buongiorno MT, Jiménez-Conde J, Giralt-Steinhauer E, de Torres-Chacón R, Montaner J, Mancha F, Cabezas JA, Martí-Fàbregas J, Prats-Sánchez L et al. Genome-Wide Association Study of VKORC1 and CYP2C9 on acenocoumarol dose, stroke recurrence and intracranial haemorrhage in Spain. *Sci Rep* 2020;**10**, DOI: 10.1038/s41598-020-59641-9.

- Dieterich W, Schink M, Zopf Y. Microbiota in the Gastrointestinal Tract. *Med Sci (Basel, Switzerland)* 2018;**6**:1–15.
- Dimidi E, Cox S, Rossi M, Whelan K. Fermented Foods: Definitions and Characteristics, Gastrointestinal Health and Disease. *Nutrients* 2019;**11**:1–26.
- Dinorah Mulet Batista D, Ramírez Pérez C, Gladis Abreu Sera D, Pérez Mir J, Alberto Pérez González J, Lenin A, Lenin Holguín R. *International Normalized Ratio, a Useful Tool in Oral Anticoagulant Therapy.*, 2012.
- Food and Drug Administration. FDA Drug Safety Communication: FDA study of Medicare patients finds risks lower for stroke and death but higher for gastrointestinal bleeding with Pradaxa (dabigatran) compared to warfarin This. *Drug Saf Commun* 2018:1–46.
- Ge B, Zhang Z, Zuo Z. Updates on the clinical evidenced herb-warfarin interactions. *Evidence-based Complement Altern Med* 2014;**2014**, DOI: 10.1155/2014/957362.
- Giannandrea D, Mengoni A, Carluccio E, Ambrosio G. Practical considerations on anticoagulation reversal: Spotlight on the reversal of dabigatran. *Vasc Health Risk Manag* 2019;**15**:139–42.
- Gibson G, Wang X. Regulatory Effects of Bifidobacteria on the Growth of Other Colonic Bacteria., 1994.
- Gomez Zavaglia A, Kociubinski G, Pérez P, De Antoni G. Isolation and characterization of Bifidobacterium strains for probiotic formulation. *J Food Prot* 1998;**61**.
- Goodman L, Gilman A. Goodman and Gilman's The Pharmacological basis of Therapeutics. *McGraw Hill Med* 2018:2047.
- Góralczyk-Bińkowska A, Szmajda-Krygier D, Kozłowska E. The Microbiota–Gut–Brain Axis in Psychiatric Disorders. *Int J Mol Sci* 2022;**23**:1–23.
- Gschwind L, Rollason V, Daali Y, Bonnabry P, Dayer P, Desmeules JA. Role of P-glycoprotein in the uptake/efflux transport of oral vitamin K antagonists and rivaroxaban through the caco-2 cell model. *Basic Clin Pharmacol Toxicol* 2013;**113**:259–65.
- Guandalini S. *Use of Lactobacillus-GG in Paediatric Crohn's Disease*. Dig and Liver Disease 2002; 34: 63-65. 2002.
- Guarner Francisco MJM. Gut flora in health and disease [9]. Lancet. Vol 361. 2003, 1831.
- Holbrook AM, Pereira JA, Labiris R, McDonald H. *Systematic Overview of Warfarin and Its Drug and Food Interactions.*, Arch Int Med 2005; 165: 1096-106.
- Jara DJ, Garafoni F, Speranza N. Rivaroxaban y sus marcas comerciales disponibles en Uruguay. Boletín Farmacológico, Hospital Manuel Quintela 2022.
- Ji Y, Chung YM, Park S, Jeong D, Kim B, Holzapfel WH. Dose-dependent and strain-dependent antiobesity effects of Lactobacillus sakei in a diet induced obese murine model. *PeerJ* 2019;**2019**:1–20.
- Jourova L, Anzenbacher P, Anzenbacherova E. Human gut microbiota plays a role in the

- metabolism of drugs. Biomed Pap 2016;160:317-26.
- Kamath S, Stringer AM, Prestidge CA, Joyce P, Kamath S, Stringer AM, Prestidge CA, Joyce P, Kamath S, Stringer AM, Prestidge CA, Joyce P. Expert Opinion on Drug Delivery Targeting the gut microbiome to control drug pharmacomicrobiomics: the next frontier in oral drug delivery frontier in oral drug delivery. *Expert Opin Drug Deliv* 2023;**20**:1315–32.
- Keeling D. Oxford Haemophilia and Thrombosis centre protocols for out-patient oral anticoagulation with vitamin K antagonists. *Oxford Univ Hosp* 2017:1–14.
- Klijn A, Mercenier A, Arigoni F. Lessons from the genomes of bifidobacteria. *FEMS Microbiol Rev* 2005;**29**:491–509.
- Küçükgöz K, Trząskowska M. Nondairy Probiotic Products: Functional Foods That Require More Attention. *Nutrients* 2022;**14**, DOI: 10.3390/nu14040753.
- Laureys D, Cnockaert M, De Vuyst L, Vandamme P. Bifidobacterium aquikefiri sp. nov., isolated from water kefir. *Int J Syst Evol Microbiol* 2016;**66**:1281–6.
- Liu J, Cheng Y, Zhang Y, Huang S, Liu Z, Wang X. Lactobacillus rhamnosus induces CYP3A and changes the pharmacokinetics of verapamil in rats. *Toxicol Lett* 2021;**352**:46–53.
- López de Luca B, Murgadella Sancho A, Padullés Zamora A, Serrano Arjona O, Roca Massa M, March Pujol M. Acenocumarol. *Rev la Of Farm* 2006;**25**.
- Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes S, Mancabelli L, Lugli GA, Rodriguez JM, Bode L, de Vos W, Gueimonde M, Margolles A, van Sinderen D, Ventura M. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. *Microbiol Mol Biol Rev* 2017;81, DOI: 10.1128/mmbr.00036-17.
- Militaru F, Vesa S, Pop T, Buzoianu A. Pharmacogenetics aspects of oral anticoagulants therapy. *J Med Life* 2015;**8**:171–5.
- Mindrescu NM, Guja C, Jinga V, Ispas S, Curici A, Twakor AN, Mihaela A, Stoian P. Interactions between Gut Microbiota and Oral Antihyperglycemic Drugs: A Systematic Review. IJMS 2024; 25: 3540.
- Ministerio de Salud/ANMAT. Código Alimentario Argentino Capítulo xvii-ALIMENTOS DE REGIMEN O DIETÉTICOS. 2017.
- Montes R, Nantes O, Molina E, Zozaya J, Hermida J, Montes Díaz R. *Predisposición Genética Al Sangrado Durante El Tratamiento Con Anticoagulantes Orales Genetic Predisposition to Bleeding during Treatment Oral Anticoagulants Treatment.*, 2008.
- O'Callaghan J, O'Toole PW. Lactobacillus: Host-microbe relationships. *Curr Top Microbiol Immunol* 2013;**358**:119–54.
- Ordovás Baines JP, Climent Grana E, Jover Botella A, Valero García I. Farmacocinética y farmacodinamia de los nuevos anticoagulantes orales. *Farm Hosp* 2009;**33**:125–33.
- Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst

- Evol Microbiol 2021;71, DOI: 10.1099/ijsem.0.005056.
- Páramo JA. Avances En El Tratamiento Antitrombótico. Nuevos Anticoagulantes Orales Para Reemplazar a Acenocumarol (Sintrom ®)., Medicine 2012; 11 (23):1421-27.
- Perez PF, Doré J, Leclerc M, Levenez F, Benyacoub J, Segura-roggero I, Schiffrin EJ, Donnet-hughes A, Perez PF. Bacterial Imprinting of the Neonatal Immune System: Lessons From Maternal Cells? 2007, DOI: 10.1542/peds.2006-1649.
- Pérez PF, Minnaard Y, Disalvo EA, De Antoni GL. Surface properties of bifidobacterial strains of human origin. *Appl Environ Microbiol* 1998;**64**:21–6.
- Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. Mechanisms of Action of Probiotics. *Adv Nutr* 2019;**10**:S49–66.
- Purdel C, Ungurianu A, Adam-Dima I, Margină D. Exploring the potential impact of probiotic use on drug metabolism and efficacy. *Biomed Pharmacother* 2023;**161**, DOI: 10.1016/j.biopha.2023.114468.
- Quigley EMM. Small intestinal bacterial overgrowth: What it is and what it is not. *Curr Opin Gastroenterol* 2014;**30**:141–6.
- Quigley EMM. The Spectrum of Small Intestinal Bacterial Overgrowth (SIBO). *Curr Gastroenterol Rep* 2019;**21**, DOI: 10.1007/s11894-019-0671-z.
- Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EMM, Sanders ME, Shamir R, Swann JR, Szajewska H, Vinderola G. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. *Nat Rev Gastroenterol Hepatol* 2021;**18**:649–67.
- Saraeva R, Paskaleva ID, Doncheva E, Eap CB, Ganev VS. Pharmacogenetics of acenocoumarol: CYP2C9, CYP2C19, polymorphisms and dose requirements. *J Clin Pharm Ther* 2007;**32**:641–9.
- Schultz M, Schölmerich J, Rath HC. Rationale for probiotic and antibiotic treatment strategies in inflammatory bowel diseases. *Dig Dis* 2003;**21**:105–28.
- Seong H, Lee SK, Cheon JH, Yong DE, Koh H, Kang YK, Jeong WY, Lee WJ, Sohn Y, Cho Y, Hyun JH, Baek YJ, Kim MH, Kim JH, Ahn JY, Ku NS, Jeong SJ, Yeom JS, Cho MS *et al.* Fecal Microbiota Transplantation for multidrug-resistant organism: Efficacy and Response prediction. *J Infect* 2020;**81**:719–25.
- Sousa T, Paterson R, Moore V, Carlsson A, Abrahamsson B, Basit AW. The gastrointestinal microbiota as a site for the biotransformation of drugs. *Int J Pharm* 2008;**363**:1–25.
- Stangier J. Clinical pharmacokinetics and pharmacodynamics of the oral direct thrombin inhibitor dabigatran etexilate. *Clin Pharmacokinet* 2008;**47**:285–95.
- Stojančević M, Bojić G, Al Salami H, Mikov M. The influence of intestinal tract and probiotics on the fate of orally administered drugs. *Curr Issues Mol Biol* 2014;**16**:55–67.
- Tassies D, Freire C, Pijoan J, Maragall S, Monteagudo J, Ordinas A, Reverter JC. Pharmacogenetics

- of acenocoumarol: Cytochrome P450 CYP2C9 polymorphisms influence dose requirements and stability of anticoagulation. *Haematologica* 2002;**87**:1185–91.
- Thijssen H, Baars L, Hazen M, Van den Bogaard A. The role of the intestinal microflora in the reductive metabolism of acenocoumarol in man. *Br J Clin Pharmacol* 1984;**18**:247–9.
- Thomas SA, Makris M. *The Reversal of Anticoagulation in Clinical Practice.*, Cin Med (London) 2017; 18 (4): 314.
- Tie JK, Stafford DW. Structure and Function of Vitamin K Epoxide Reductase. *Vitam Horm* 2008;**78**:103–30.
- Tissier H. Recherches Sur La Flore Intestinale Des Nourrissons (État Normal et Pathologique). Paris, 1900.
- Trejo I. C. Anticoagulantes: Farmacología, mecanismos de acción y usos clínicos. *Cuad Cirugía* 2004;**18**:83–90.
- Tsai CC, Lin PP, Hsieh YM, Zhang ZY, Wu HC, Huang CC. Cholesterol-Lowering Potentials of Lactic Acid Bacteria Based on Bile-Salt Hydrolase Activity and Effect of Potent Strains on Cholesterol Metabolism In Vitro and In Vivo. *Sci World J* 2014;**2014**, DOI: 10.1155/2014/690752.
- Ufer M. Comparative Pharmacokinetics of Vitamin K Antagonists. *Clin Pharmacokinet* 2005;**44**:1227–46.
- Ventura M, Van Sinderen D, Fitzgerald GF, Zink R. *Insights into the Taxonomy, Genetics and Physiology of Bifidobacteria*., Ant Van Leeuw 2004; 86 (3):205.
- Vinderola G, Sanders ME, Salminen S, Szajewska H. Postbiotics: The concept and their use in healthy populations. *Front Nutr* 2022;**9**:1–7.
- Wadelius M, Sörlin K, Wallerman O, Karlsson J, Yue Q-Y, Magnusson PKE, Wadelius C, Melhus H. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. *Pharmacogenomics J* 2004;**4**:40–8.
- Walsh J, Griffin BT, Clarke G, Hyland NP. Drug–gut microbiota interactions: implications for neuropharmacology. *Br J Pharmacol* 2018;**175**:4415–29.
- Watabe T, Okuda H, Ogura K. Lethal drug interactions of the new antiviral, Sorivudine, with anticancer prodrug 5-fluorouracil. *Chem Pharm Bull* 1997;**20**:2278–81.
- Winston JA. CMT. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract. *Anaerobe* 2015;**14**:871–82.
- Wise JL, Cummings BP. The 7- α -dehydroxylation pathway: An integral component of gut bacterial bile acid metabolism and potential therapeutic target. *Front Microbiol* 2023;**13**, DOI: 10.3389/fmicb.2022.1093420.
- Yersin S, Vonaesch P. Small intestinal microbiota: from taxonomic composition to metabolism. *Trends Microbiol* 2024;1–14.
- Yoo DH, Kim IS, Van Le TK, Jung IH, Yoo HH, Kim DH. Gut microbiota-mediated drug interactions

- between lovastatin and antibiotics. Drug Metab Dispos 2014;42:1508-13.
- Yoo HH, Kim IS, Yoo DH, Kim DH. Effects of orally administered antibiotics on the bioavailability of amlodipine: Gut microbiota-mediated drug interaction. *J Hypertens* 2016;**34**:156–62.
- Yousefi B, Eslami M, Ghasemian A, Kokhaei P, Salek Farrokhi A, Darabi N. Probiotics importance and their immunomodulatory properties. *J Cell Physiol* 2019;**234**:8008–18.
- Zavaglia AG, Kociubinski G, Pérez P, De Antoni G. Isolation and characterization of Bifidobacterium strains for probiotic formulation. *J Food Prot* 1998;**61**:865–73.
- Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O'toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. *Int J Syst Evol Microbiol* 2020;**70**:2782–858.
- Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. *Nat Rev Gastroenterol Hepatol* 2019;**16**:35–56.

1. Introducción

Muchos estudios han descripto la interacción entre medicamentos y bacterias residentes en el tracto gastrointestinal humano, y cómo esta interacción afecta parámetros tanto farmacocinéticos como farmacodinámicos (Sousa et al. 2008; Jourova, Anzenbacher and Anzenbacherova 2016; Wilkinson, Ilhan and Herbst-Kralovetz 2018). Por ejemplo, se ha propuesto que la acción de enzimas bacterianas como hidrolasas y reductasas podría modificar la polaridad de las moléculas y alterar así su absorción a través del epitelio (Sousa et al. 2008). El gran número y variedad de microorganismos residentes en el intestino posicionaría a este órgano en el mismo nivel que el hígado en términos de metabolización de drogas (Stojančević et al. 2014).

Como ya se ha mencionado en la Introducción, los microorganismos probióticos han sido extensamente estudiados por sus diversas propiedades benéficas que le son conferidas al hospedador cuando son administrados en cantidades apropiadas.

Es importante mencionar, además, que los probióticos han demostrado tener la capacidad para modificar parámetros farmacocinéticos de diversas drogas (Kato *et al.* 2007; Lee *et al.* 2012; Matuskova *et al.* 2014; Stojančević *et al.* 2014; Kim *et al.* 2018). Un estudio *in vivo* en ratas, demostró un incremento en la biodisponibilidad de la amiodarona, un antiarrítmico, cuando se les administraba *E. coli* Nissle 1917 (Matuskova *et al.* 2014). Resultados similares se obtuvieron cuando la nifedipina, un bloqueante de canales de calcio, se administraba concomitantemente con *L. casei* (Kato *et al.* 2007). Por otro lado, en experimentos *in vivo*, se demostró la actividad metabólica de bacterias probióticas sobre la sulfasalazina, antiinflamatorio con actividad antibacteriana, aunque esta interacción no resultó en alteraciones en la concentración plasmática de la droga cuando se comparó con el grupo control de ratas que no recibió la cepa probiótica (Lee *et al.* 2012).

Los efectos descriptos previamente se pueden correlacionar con una alteración de la permeabilidad del epitelio intestinal o, también, con una modificación de la actividad de los citocromos, principales responsables de la metabolización de varias drogas (Matušková et al. 2011; Matuskova et al. 2014; Selwyn et al. 2016). Adicionalmente, algunos efectos indirectos de estos microorganismos, como la modificación de la microbiota intestinal, también contribuyen a la metabolización de diversos xenobióticos (Sousa et al. 2008; Stojančević et al. 2014; Jourova, Anzenbacher and Anzenbacherova 2016).

Tanto los probióticos como las drogas anticoagulantes orales son ampliamente utilizados. Esto genera una alta probabilidad de que personas bajo tratamiento anticoagulante también sean consumidores de productos probióticos.

Como ya se mencionó, el acenocumarol es un derivado de la 4-hidroxicumarina, estructuralmente similar a la warfarina, pero presenta un grupo nitro en la posición 4' (Thijssen, Baars and Reijnders 1983; Saraeva *et al.* 2007). Las diferencias entre ambos son básicamente farmacocinéticas y farmacodinámicas, siendo la semivida de la warfarina más larga que la del acenocumarol (29–45 horas frente a 0,5-9 horas). En las presentaciones comerciales del acenocumarol se encuentra una mezcla racémica de ambos enantiómeros S (-) y R (+), siendo esta última la responsable casi de la totalidad del efecto terapéutico debido a su vida media más larga. Los anticoagulantes orales directos, como el dabigatrán y el rivaroxabán, surgieron posteriormente a los antagonistas de la vitamina K. El dabigatrán es un inhibidor directo de la trombina, cuya presentación farmacéutica corresponde a su prodroga, dabigatrán etexilato. Por último, el rivaroxabán es un inhibidor directo del factor Xa de la cascada de coagulación. Ambos inhibidores funcionan de manera específica y reversible (Ordovás Baines *et al.* 2009).

Como se mencionó en el capítulo introductorio, el metabolismo del acenocumarol es llevado a cabo principalmente por el citocromo P4502C9 (Cyp2c9) y en menor medida por los citocromos Cyp1a2 y Cyp2c19 (Tassies *et al.* 2002; Ufer 2005). En la primera fase del metabolismo, el acenocumarol es biotransformado a 6- y 7- hidroxi-acenocumarol, amina y acetamida acenocumarol y dos alcoholes diasteroméricos. Además, el 8-hidroxi acenocumarol fue reportado como un metabolito de menor importancia cuantitativa. Esta hidroxilación es citocromo dependiente (Saraeva *et al.* 2007).

Por otro lado, tras la rápida conversión de dabigatrán etexilato a dabigatrán por la acción de esterasas del huésped, la forma activa de este anticoagulante se elimina en su mayoría inalterado por orina (Blech *et al.* 2008). Por último, en el caso del rivaroxabán, su eliminación es dual, biliar y renal, ya que presenta un metabolismo hepático llevado a cabo por enzimas del citocromo P450 y parte se elimina inalterado por orina (Ordovás Baines *et al.* 2009).

Si bien se ha descripto la interacción de anticoagulantes con alimentos o con otros medicamentos (Ordovás Baines *et al.* 2009; Vranckx, Valgimigli and Heidbuchel 2018), poco se sabe de la interacción con alimentos probióticos (Lindh 2010).

Diferentes especies tanto del género *Bifidobacterium* como *Lactobacillus* son utilizadas frecuentemente en la formulación de alimentos probióticos (O'Callaghan and O'Toole 2013; Bottacini *et al.* 2014; O'Callaghan and van Sinderen 2016). Enzimas intra y extracelulares como proteasas, hidrolasas, reductasas, epimerasas y mutasas han sido descriptas en estos géneros bacterianos. En este sentido, estas bacterias podrían desempeñar un rol en la degradación de compuestos exógenos, dada su actividad sobre componentes de los alimentos, lo que podría contribuir al efecto benéfico en el hospedador (Kojic *et al.* 1991; Pokusaeva, Fitzgerald and Van Sinderen 2011; Dias de Queirós *et al.* 2020; Jung *et al.* 2020; Manasian *et al.* 2020; Modrackova *et al.* 2020). Sin

embargo, al momento, no se encuentran reportadas interacciones con anticoagulantes orales.

El objetivo de este capítulo fue estudiar, *in vitro*, los efectos de las bifidobacterias y lactobacilos sobre el acenocumarol, el dabigatrán y el rivaroxabán.

2. Materiales y métodos

2.1 Cepas bacterianas

En el presente trabajo se utilizaron tres cepas bacterianas, dos provenientes de la colección del CIDCA; *Bifidobacterium bifidum* CIDCA 5310 y *Bifidobacterium adolescentis* CIDCA 5317, aisladas a partir de heces de neonatos sanos (Gomez Zavaglia *et al.* 1998; Pérez *et al.* 1998), y una cepa de colección, *Lactobacillus acidophilus* ATCC 314. En adelante, las cepas serán nombradas como CIDCA 5310, CIDCA 5317 y ATCC 314.

Todas las cepas fueron conservadas a -80 °C en glicerol 10 % (p/v) como crioprotector.

Al momento de los ensayos las cepas fueron descongeladas e inoculadas en caldo MRS (De Man Rogosa Sharpe- Biokar Diagnostics, Beauvais, France) con 0.05 %p/v de cisteína (cys) en anaerobiosis (AnaeroPack®-Anaero, Mitsubishi Gas Chemical, Tokyo, Japón), durante 48 h a 37 °C. Luego se inocularon (1 % v/v) en el mismo medio y se incubaron durante 24 h en las condiciones previamente mencionadas.

2.2 Preparación de stocks de drogas

Para preparar el stock de Acenocumarol (AC) se disolvió la cantidad necesaria de droga API (por sus siglas en inglés "Active Pharmaceutical Ingredient") en dimetilformamida (DMF) (ANEDRA, Buenos Aires, Argentina) para obtener una concentración final de 16 mg/ml y luego se filtró por membrana de 0.45 μ m. La solución fue almacenada a -20 °C hasta su uso.

Para preparar el stock de Dabigatran etexilato (DAB) (LGC Standards, Toronto Research Chemicals, Toronto, Canada) se pesó la cantidad necesaria de droga para obtener una concentración final de 6 mg/ml y se disolvió en metanol. Luego, se filtró por membranas de 0.45 µm y fue almacenado a -20 °C hasta su uso.

Para preparar el stock de Rivaroxaban (RIV) se pesó la cantidad necesaria de droga API para obtener una concentración final de 10 mg/ml o de 5 mg/ml en DMF. Luego, se filtró $(0.45~\mu m)$ y se almacenó a -20 °C hasta su uso.

El acenocumarol y el rivaroxabán (API) fueron gentilmente donados por Laboratorios Bagó, planta La Plata.

Las concentraciones utilizadas fueron calculadas tomando la dosis diaria de droga recomendada y el volumen estimado del estómago de una persona adulta (Johnson 2003)

Para todas las drogas el stock fue preparado en una concentración 100x.

2.3 Crecimiento de las bacterias con los anticoagulantes y obtención de muestras para análisis

Para el caso del AC, las bacterias fueron incubadas a 37 °C en anaerobiosis con agregado de AC $0.16 \, \text{mg/ml}$ (concentración final en tubo). A las 24 h se realizaron recuentos en agar MRS, incubándose las placas durante 48 h a 37 °C en anaerobiosis. Además, 2 ml de cada cultivo fueron centrifugados durante 5 min a 3550 g, filtrados (0,45 μ m) y conservados a -20 °C hasta su análisis por cromatografía líquida de alta resolución (HPLC) o mediante espectroscopía de infrarrojos por transformada de Fourier FTIR. También se analizó un control inicial antes de incubar.

Para la incubación con DAB se agregó al tubo de cultivo 100 μ l del stock 100x, alcanzando una concentración final de 0,06 mg/ml. A las 24 h de crecimiento se procedió a realizar el recuento en placa de MRS agar incubándose las mismas 48 h a 37 °C en anaerobiosis. El resto del cultivo fue centrifugado 5 min a 3550 g y el sobrenadante fue analizado mediante FTIR.

Finalmente, para la incubación con RIV, se agregó al tubo de cultivo 100 µl del stock, alcanzando una concentración final de 0,1 mg/ml ó 0,05 mg/ml. Se procedió de la misma manera que la descripta para DAB con respecto a los recuentos y, en este caso, parte de las muestras fueron utilizadas para los ensayos funcionales de coagulación.

2.4 Cuantificación de acenocumarol (AC) por HPLC

Para la cromatografía, se utilizó un equipo Hewlett Packard HP 1100 con detector UV con arreglo de diodos (seteado a 280 nm), y una columna LiChrospher 100 RP-18 (4x250 mm, $5 \mu m$).

La fase móvil empleada fue de acetonitrilo (Biopack, Zarate, Buenos Aires, Argentina)/ácido fosfórico 0,1 % (Cicarelli, San Lorenzo, Santa Fe, Argentina), en una proporción 40:60. La dilución del ácido fosfórico fue realizad con agua Mili Q. Previo a su uso, la solución fue filtrada por membranas de nylon de 0.45 μm (13 mm, Osmonics Inc, Fisher Scientific, Pittsburgh, PA, EEUU). Las muestras fueron filtradas por membranas de 0.22 μm (GVS ABLUO, Sanford, Florida, EEUU).

El flujo fue establecido en 1,2 ml/min y la temperatura de la columna a 25 °C. Se inyectaron manualmente 20 µl de muestra por triplicado. La curva de calibración se realizó en medio MRS adicionado con diferentes concentraciones de AC en DMF.

2.5 Análisis mediante espectroscopía de infrarrojos por transformada de Fourier (FTIR)

Se realizaron cultivos de cada cepa bacteriana en MRS adicionado con anticoagulante (AC o DAB), a 37 °C durante 24 h. Luego los cultivos se centrifugaron (5 min a 3550 g) y los sobrenadantes se filtraron como se indicó anteriormente (a estas muestras se las denominó "tiempo 24 h"). Se tomaron 4 μ l de sobrenadante libre de células y se colocaron sobre el cristal de ZnSe de un espectrofotómetro FTIR con reflectancia total atenuada (ATR-FTIR) Thermo Nicolet iS10 (Thermo Scientific, Waltham, MA, EEUU).

Se registraron los espectros FTIR de la muestra líquida en el rango de 4000 a 600 cm⁻¹ mediante la adición de 32 barridos con una resolución de 4 cm⁻¹.

Luego se secó la muestra sobre el cristal de ZnSe mediante corriente de aire frío y se registraron los espectros FTIR de la muestra seca en las mismas condiciones que las utilizadas para la muestra líquida. El procedimiento se realizó por duplicado, realizando al menos 5 espectros por muestra.

Cuando fue necesario, las contribuciones residuales debidas al vapor de agua atmosférico y al CO₂ fueron eliminadas sustrayendo el espectro correspondiente al espectro de la muestra.

Utilizando la misma metodología se realizaron espectros control con: MRS puro; MRS adicionado con anticoagulante; cultivo de 24 h de cada cepa en MRS puro y cultivo de 24 h de cada cepa en MRS puro al que luego se le adicionó anticoagulante en el momento de realizar los espectros (a este último control se lo denominó "tiempo 0 h").

2.6 Ensayos funcionales- Medida del tiempo de Protrombina

2.6.1 Reactivo

Se utilizó el reactivo Soluplastin (Wiener Lab, Rosario, Santa Fe, Argentina) que se reconstituyó según indicaciones del fabricante con 2 ml de agua destilada; luego se termostatizó a 37 °C durante 30 minutos antes de su uso.

2.6.2 Equipo

Para las medidas se utilizó el equipo semiautomático Coagulómetro Coatron M-1 (TECO-GmbH, Neufahrn, Alemania) de un solo canal foto-óptico para determinar los parámetros básicos de la segunda etapa de la hemostasia (cascada de coagulación) en plasma humano citratado. Se siguieron las instrucciones del fabricante para medir el Tiempo de Protrombina (TP).

Los volúmenes utilizados de plasma y reactivo fueron los indicados por el fabricante (100 μ l de plasma y 200 μ l de reactivo).

2.6.3 Plasma

Se utilizó sangre de voluntarios no medicados con anticoagulantes que fue obtenida por punción venosa de la vena cubital mediana o cefálica y recibida en tubos con citrato de sodio al 3,8 % p/v como anticoagulante. La relación sangre:citrato utilizada fue de 9:1.

Luego las muestras se centrifugaron durante 15 minutos a 750 g para separar el plasma de los elementos formes. El plasma se conservó a -20 °C hasta su utilización en los ensayos.

2.6.4 Procedimiento experimental

Se tomaron alícuotas de 1 ml de los cultivos de las cepas incubadas con RIV 0,05 mg/ml y de los cultivos control sin droga, y se centrifugaron durante 5 minutos a 3550 g. Luego se agregaron 5 μ l de estos sobrenadantes a 100 μ l de plasma para realizar la determinación del TP.

Previamente, se realizó una curva de calibración para determinar la capacidad del equipo de detectar cambios en la concentración de RIV agregada. Para esto se realizaron diluciones del stock de 0,05 mg/ml, y 5 μ l de estas muestras fueron adicionadas a 100 μ l de plasma para determinar el TP.

3. Análisis

Para los ensayos de crecimiento de las cepas en presencia de las drogas, se utilizó el software de Microsoft Office Excel 2007 y los resultados de los recuentos finales fueron analizados mediante la prueba t de Student (p < 0.05)

El análisis de los cromatogramas de HPLC, fue realizado con el software Origin (versión 8.5, OriginLab Corporations, Massachusets, EEUU).

El análisis de los espectros FTIR se llevó a cabo utilizando el software OMNIC (versión 8.3, Thermo Scientific).

El análisis multivariante de los espectros FTIR se realizó utilizando el software SOLO 8.6.1 PLS Toolbox de Eigenvector (http://www.eigenvector.com). Luego de la inspección visual de los espectros obtenidos, se seleccionaron diferentes regiones de interés para realizar Análisis de Componentes Principales (PCA). Los espectros fueron preprocesados mediante corrección de línea de base automática y normalización por corrección de señal multiplicativa (MSC). La validación cruzada se realizó mediante el método de persianas venecianas con 7 divisiones y 2 muestras por división. Se obtuvieron diferentes modelos para cada cepa, donde el componente principal 1 (PC1), explicaba más del 90 % de la varianza total de los datos.

4. Resultados

Efecto de anticoagulantes orales sobre la viabilidad y el crecimiento de las cepas

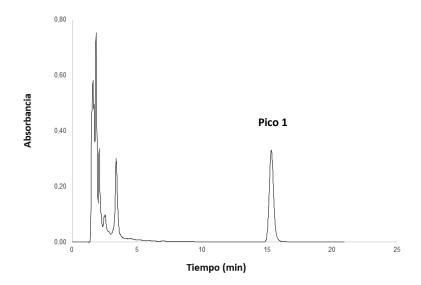
Para evaluar la viabilidad de las cepas en presencia de las diferentes drogas se realizaron recuentos en placa de agar MRS que se incubaron en anaerobiosis a 37 °C durante 48 h.

En este sentido se puede ver que los resultados obtenidos varían según el fármaco anticoagulante estudiado (Tabla 1.1). En primera medida, no se encontraron diferencias significativas en el crecimiento con AC, 0,16 mg/ml, para ninguna de las tres cepas en estudio en las condiciones ensayadas (Tabla 1.1). Esto se encuentra en concordancia con resultados previos del grupo (Assad 2019) y fue la concentración de AC utilizada a lo largo de todo el presente trabajo de tesis.

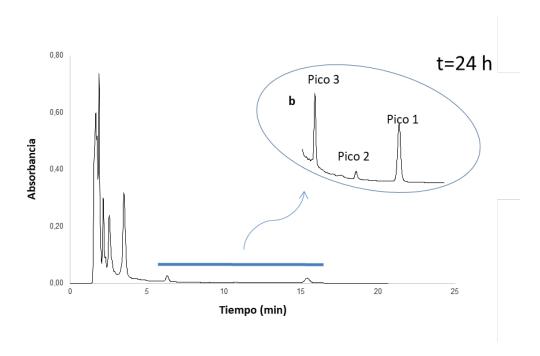
Con la concentración de RIV de 0,1 mg/ml, que concordaba con la concentración hipotética encontrada en el humano al momento de su ingesta, se observó que tanto para la cepa CIDCA 5310 como la cepa CIDCA 5317 no se recuperaron microorganismos viables. Por el contrario, el crecimiento de la cepa ATCC 314 no se vio afectado por la concentración de RIV, obteniéndose recuentos muy similares a los valores control (1,66x10⁸ ufc/ml Control vs 1,21x10⁸ ufc/ml RIV) (Tabla 1.1).

En base a estos resultados se evaluó una concentración menor de RIV, 0,05 mg/ml, encontrándose una condición en la cual las cepas crecieron, aunque se obtuvieron recuentos menores para las tres, en comparación a los cultivos sin droga (Tabla 1.1). Esta concentración fue seleccionada para continuar con el resto de los ensayos.

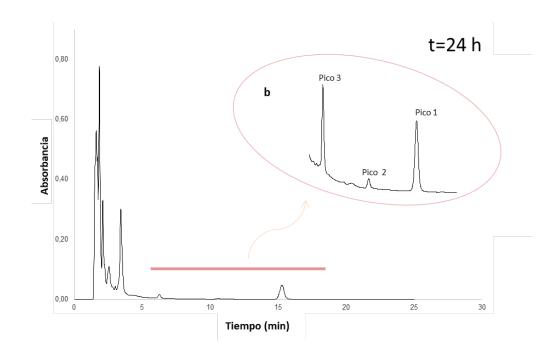
Por último, para el caso del DAB se evaluó una concentración de 0,06 mg/ml. La misma generó una tendencia a disminución del crecimiento de las tres cepas pero no es significativa con respecto al control (p> 0,05) (Tabla 1.1). Es por esto que esta concentración fue la seleccionada para continuar con los ensayos.


Tabla 1.1. Recuentos de las cepas CIDCA 5310, CIDCA 5317 y ATCC 314 expresados como el logaritmo de ufc/ml, crecidas durante 24 h con diferentes anticoagulantes orales. Se muestra valores representativos de tres ensayos independientes con su respectiva desviación estándar. En cada columna, las diferencias significativas (p<0.05) respecto al control se indican con un asterisco.

	Cepa CIDCA 5310	Cepa CIDCA 5317	Cepa ATCC 314
Control	9,59 ± 0,05	8,51 ± 0,13	8,22 ± 0,06
AC 0,16 mg/ml	9,07 ± 0,03	7,93 ± 0,16	8,11 ± 0,26
DAB 0,06 mg/ml	8,38 ± 0,14	7,77 ± 0,16	7,90 ± 0,05
RIV 0,1 mg/ml	< 2 *	2,47 ± 0,03 *	8,08 ± 0,02
RIV 0,05 mg/ml	8,17 ± 0,08	5,08 ± 0,01 *	7,92 ± 0,05


Cuantificación de acenocumarol (AC) por HPLC

Con el objeto de evaluar el efecto de los microorganismos sobre la concentración de AC, se realizaron determinaciones mediante HPLC del anticoagulante en los sobrenadantes de las muestras obtenidas luego de cultivar cada microorganismo con la droga. De manera representativa, en la figura 1.1, se aprecia un cromatograma obtenido a tiempo 0 h para el AC en MRS, evidenciándose un pico alrededor de los 15 min (pico 1). Esto mismo fue obtenido para las tres cepas con la droga a tiempo 0 h.


Luego de 24 h de incubación se observa lo graficado en las figuras 1.2, 1.3 y 1.4 para las cepas CIDCA 5310, CIDCA 5317 y ATCC 314, respectivamente. Además, para la cepa CIDCA 5310 y CIDCA 5317 (Figuras 1.2 y 1.3), se visualiza una ampliación de la zona de interés de los cromatogramas para poder resaltar la aparición de nuevos picos (Figuras 1.2 b y 1.3b).

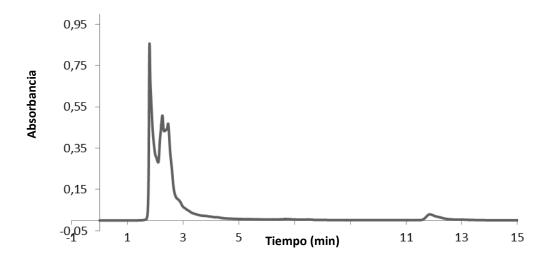
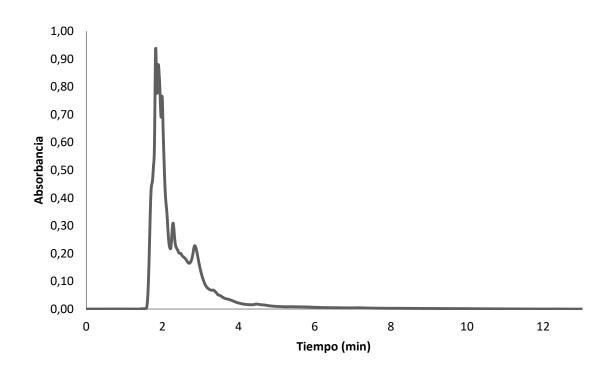

Figura 1.1. Cromatograma obtenido por HPLC de AC 0,16 mg/ml en MRS a tiempo 0 h. Lo mismo fue obtenido en el caso de las tres cepas a tiempo 0 h.

Figura 1.2. Cromatograma obtenido por HPLC de un cultivo de la cepa CIDCA 5310 luego de 24 h de incubación con AC 0,16 mg/ml y ampliación de la zona de interés (b).

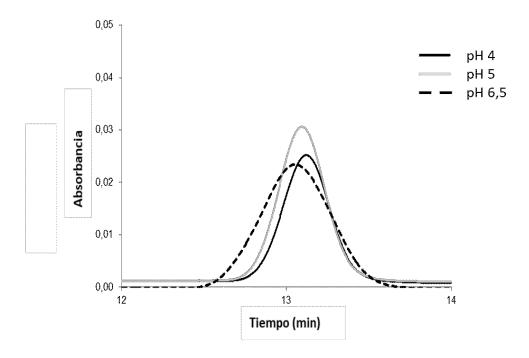
Figura 1.3. Cromatograma obtenido por HPLC de un cultivo de la cepa CIDCA 5317 luego de 24 h de incubación con AC 0,16 mg/ml y ampliación de la zona de interés (b).

Figura 1.4. Cromatograma obtenido por HPLC de un cultivo de la cepa ATCC 314 luego de 24 h de incubación con AC 0,16 mg/ml.


Al analizar los resultados obtenidos, se localizó un pico correspondiente al AC a tiempo de retención (tr) 15,25 ± 0,15 min (Figura 1.1). Luego, al evaluar los cromatogramas correspondientes a las cepas incubadas con AC por 24 h se pudieron distinguir dos efectos (Figuras 1.2, 1.3 y 1.4): por un lado, la disminución del área bajo la curva de AC comparado con el tiempo 0 para las 3 cepas y, por otro lado, la aparición de nuevos picos a tiempos de retención menores: entre 6,25 y 6,30 min para el pico 3 y 10,60 a 10,74 min para el pico 2, para las cepas CIDCA 5310 y CIDCA 5317 (Figuras 1.2b y 1.3b).

Según los cálculos realizados, como se visualiza en la tabla 1.2, la concentración inicial de AC (pico 1) fue de 0,120 \pm 0,017 mg/ml, 0,119 \pm 0,016 mg/ml y 0,159 \pm 0,008 mg/ml para las cepas CIDCA 5310, CIDCA 5317 y ATCC 314, respectivamente. Si estos valores son comparados con los obtenidos a las 24 h se observa un descenso significativo (p <0.05) en todos los casos: 0,020 \pm 0,008 mg/ml para la cepa CIDCA 5310, 0,015 \pm 0,001 mg/ml para la cepa CIDCA 5317 y 0,008 \pm 0,003 mg/ml para la cepa ATCC 314 (Tabla 1.2). Sin embargo, para la cepa de lactobacilos, no se pudieron apreciar picos de degradación como en el caso de las bifdobacterias (Figura 1.4)

Tabla 1.2 Concentraciones calculadas de AC (mg/ml) para las tres cepas a tiempo 0 h y luego de 24 h de incubación a partir de los cromatogramas obtenidos. Se muestran los valores obtenidos de un experimento representativo de tres ensayos independientes con su respectiva desviación estándar. En cada columna, las diferencias significativas (p< 0.05) respecto al tiempo 0 h se indican con un asterisco.


Сера	Concentración de AC (mg/ml)		
	0 h	24 h	
CIDCA 5310	0,120 ± 0,017	0,020 ± 0,008 [*]	
CIDCA 5317	0,119 ± 0,016	0,015 ± 0,001 [*]	
ATCC 314	0,159 ± 0,008	$0,008 \pm 0,003^*$	

Es importante destacar que no se observaron picos en la zona en la que se detectó el AC o sus productos cuando no se agregó el anticoagulante: medio MRS control y muestras de cultivos de 24 h sin la droga. Se muestra como ejemplo el espectro del cultivo de 24 h de la cepa CIDCA 5310 (Figura 1.5).

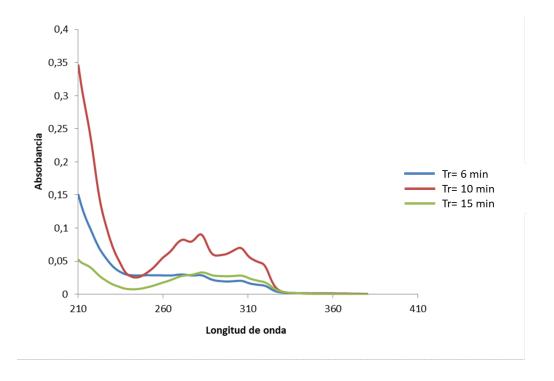


Figura 1.5. Cromatogramas obtenidos por HPLC de un cultivo de la cepa CIDCA 5310 sin agregado de acenocumarol.

Para descartar que el efecto observado por las cepas sobre el AC pudiera deberse a un cambio de pH en el medio por el metabolismo bacteriano, se realizaron acidificaciones artificiales al medio MRS y se observó que se conservaban tanto el área bajo la curva como el tiempo de retención para el pico de AC (Figura 1.6), indicando que nuestros hallazgos no se deben a cambios en esta variable. Es importante destacar además, que el análisis de los espectros UV de los picos observados luego de 24 h de incubación con las bifidobacterias es compatible con la aparición de nuevas especies químicas (Figura 1.7).

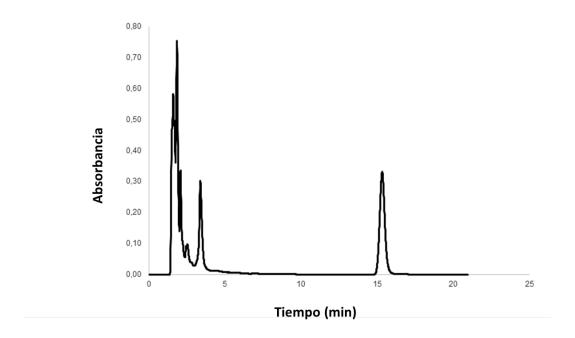


Figura 1.6. Cromatogramas obtenidos por HPLC para el medio MRS acidificado artificialmente a pH 4, 5 y 6.

Figura 1.7. Espectros registrados por HPLC para los diferentes picos de AC luego de 24 h de incubación con la cepa CIDCA 5310, utilizada como ejemplo.

Por último, para descartar que el efecto observado no se debía a la liberación de componentes al medio durante la incubación con la droga, se incubaron sobrenadantes de cultivos de 24 h con AC en las mismas condiciones y se advirtió que el pico característico se mantenía invariable (Figura 1.8).

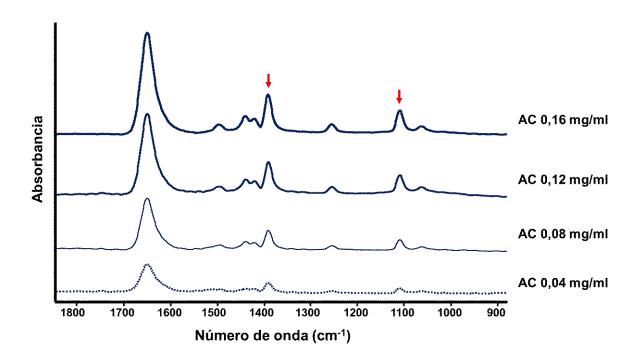
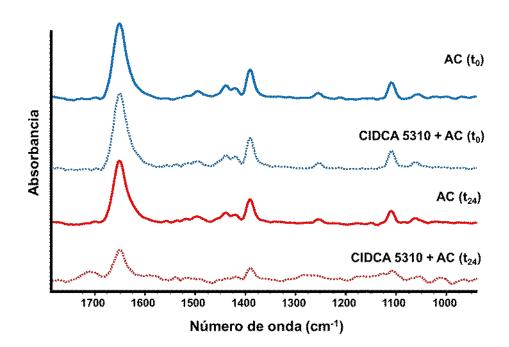
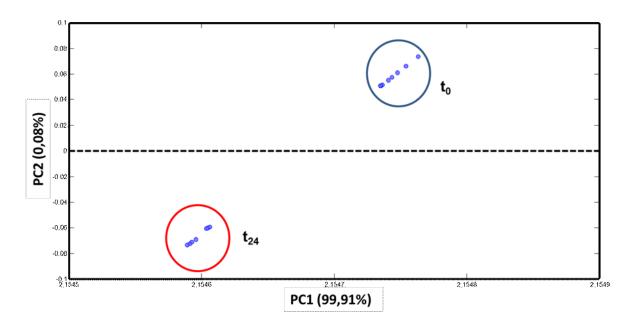


Figura 1.8. Cromatogramas obtenidos por HPLC de un sobrenadante de cultivo de la cepa CIDCA 5310 a la que se le agregó AC 0,16 mg/ml y se incubó 24 h a 37 °C

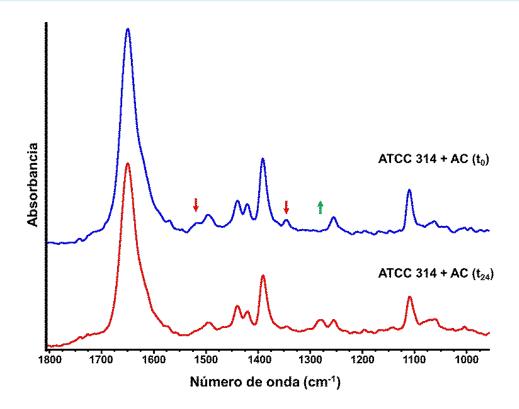
Análisis de acenocumarol (AC) y dabigatrán (DAB) por espectroscopía de infrarrojos por transformada de Fourier (FTIR)


En el espectro infrarrojo, las posiciones y las alturas relativas de las bandas que aparecen a diferentes números de onda se corresponden con los tipos de enlaces presentes en las moléculas y con el entorno en que dichos enlaces se encuentran. Por lo tanto, los cambios en la estructura de una molécula pueden visualizarse como aumentos o disminuciones relativas en los máximos de las bandas, y/o como desplazamientos de las bandas a diferentes números de onda.

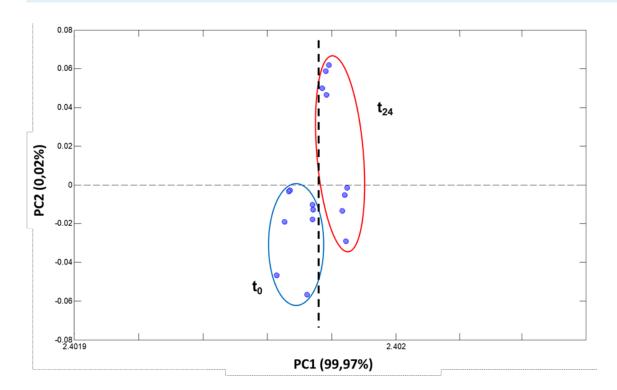
El espectro de FTIR de acenocumarol en solución acuosa se caracteriza por una banda de alta intensidad a 1650 cm⁻¹, que corresponde al estiramiento del enlace carbonilo del anillo lactona, y dos bandas de menor intensidad a 1390 cm⁻¹ y 1110 cm⁻¹, indicadas con flechas en la figura 1.9. Estas últimas están relacionadas con el estiramiento del enlace - NO₂ y el del enlace C-O de la lactona, respectivamente (Karci and Ertan 2005; Hubert Joe *et al.* 2009). La intensidad de dichas bandas presenta una buena correlación con la concentración de la droga en medio MRS, como se puede observar en el primer grupo de espectros que se visualizan en la figura 1.9.


Figura 1.9. Espectros obtenidos por FTIR para el MRS con distintas concentraciones de AC. De abajo hacia arriba: 0,04 mg/ml, 0,08 mg/ml, 0,12 mg/ml y 0,16 mg/ml. Las flechas indican los picos de elevancia situados a 1650, 1390 y 1110 cm⁻¹. Se observan espectros representativos de al menos 5 replicados por muestra.

En comparación con los espectros anteriores, cuando se analizaron las muestras de los sobrenadantes de los cultivos de la cepa CIDCA 5310 la banda presente a 1650 cm⁻¹ disminuyó su intensidad durante la incubación, reduciendose alrededor del 50 % luego de 24 h. Asimismo, la intensidad de las bandas a 1390 cm⁻¹ y 1110 cm⁻¹ también disminuyeron luego de la incubación. Al mismo tiempo, una nueva banda, que puede atribuirse al estiramiento del doble enlace C=O en el ácido carboxílico producto de la apertura del anillo de lactona, apareció a 1720 cm⁻¹. En la figura 1.10 se observan los espectros obtenidos para la cepa CIDCA 5310 tanto a tiempo 0 h como 24 h luego de la incubacion con AC y los respectivos espectros de AC en MRS a tiempo 0 h y 24 h para poder comparar.


Figura 1.10 Espectros obtenidos por FTIR para la cepa CIDCA 5310 a t=0 h y luego de 24 h de incubación con AC 0,16mg/ml. A efectos comparativos, se agregan las curvas de los respectivos controles: AC 0,16 mg/ml en MRS a t= 0 h y luego de 24 h de incubación. Las curvas a tiempo 0 h están representadas en azul y las de 24 h en **rojo**. Se observan espectros representativos de al menos 5 replicados por muestra.

Los resultados obtenidos mediante el análisis visual de los espectros FTIR para el AC en medio líquido en presencia de la cepa CIDCA 5310 se compararon con los obtenidos mediante Análisis de Componentes Principales (PCA) de los espectros FTIR de las muestras secadas al aire. En el PCA realizado sobre la región 880 - 1480 cm-1 del espectro FTIR se observó, en el espacio PC1-PC2, que los espectros correspondientes al AC en MRS incubado con la cepa CIDCA 5310 a tiempo 0 h se agruparon por separado de los correspondientes a 24 h de incubación, indicando cambios en la molécula de AC durante la incubación con la bacteria (figura 1.11).

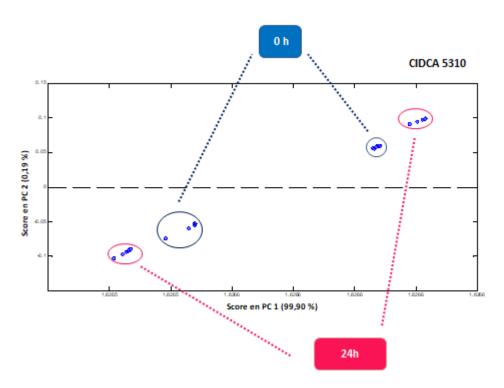

Figura 1.11. Diagrama de componentes principales realizado sobre la región 880-1480 cm $^{-1}$ de los espectros FTIR de acenocumarol en MRS, al inicio (t_0) y luego de 24 h de incubación (t_{24}) a 37 °C en presencia de la cepa CIDCA 5310.

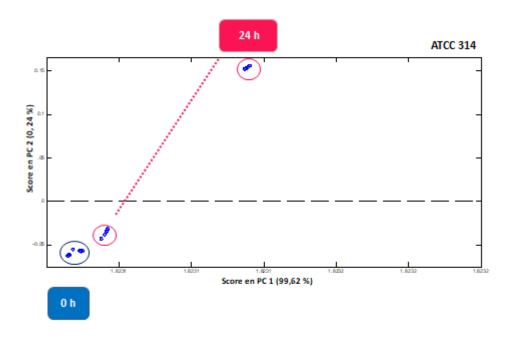
En presencia de la cepa ATCC 314, el espectro FTIR del AC luego de 24 h de incubación mostró un perfil similar al espectro obtenido al inicio de la incubación (t = 0 h), siendo las principales diferencias una pequeña disminución relativa de la intensidad de los picos localizados a 1520 cm⁻¹ y a 1350 cm⁻¹, y la aparición de un nuevo pico a 1280 cm⁻¹ en las muestras correspondientes a 24 h de incubación (figura 1.12).

Figura 1.12. Espectros obtenidos por FTIR para la cepa ATCC 314 incubada con AC 0,16 mg/ml a t= 0 h (curva azul) y t=24 h (curva roja). Las flechas indican los picos de relevancia identificados situados a 1520 cm⁻¹, 1350 cm-1 y 1280 cm⁻¹. Las flechas rojas indican disminución de la altura del pico y la **verde** aparición de un nuevo pico. Se observan espectros representativos de al menos 5 replicados por muestra.

Podemos observar, además, que estos picos son diferentes a los encontrados luego de la incubación con la cepa CIDCA 5310. La gran similitud observada entre los espectros FTIR de AC en MRS obtenidos antes y después de la incubación con la cepa ATCC 314 se reflejó también en una pobre separación de ambas muestras cuando los espectros FTIR de las muestras secas se analizaron mediante PCA, como se observa en la figura 1.13.


Figura 1.13. Diagrama de componentes principales realizado sobre la región 1180-1680 cm $^{-1}$ de los espectros FTIR de acenocumarol en MRS, al inicio (\mathbf{t}_0) y luego de 24 h de incubación (\mathbf{t}_{24}) a 37 $^{\circ}$ C en presencia de la cepa ATCC 314


En el caso de la cepa CIDCA 5317 no se observaron diferencias luego de la incubación con AC tanto en la inspección visual de los espectros como en el análisis por PCA. Es por esto que se seleccionaron los resultados obtenidos por las cepas CIDCA 5310 y ATCC 314 ya que las diferencias apreciadas entre los espectros a tiempo 0 y 24 h tienen una buena correlación con el análisis por componentes principales, siendo la cepa CIDCA 5310 la que presenta una mejor separación de las muestras a tiempo 0 y 24 h.


Para el análisis de la interacción de las cepas bacterianas con DAB durante el crecimiento en MRS, se combinó la capacidad de la espectroscopía FTIR para poner en evidencia los cambios en la estructura de las moléculas con la capacidad del análisis de componentes principales (PCA) para realizar agrupamientos basados en las características intrínsecas de los datos (en este caso, los espectros FTIR). Esto surgió por la dificultad de poder identificar picos característicos de esta droga en el medio de cultivo como en el caso del AC, lo que no permitió realizar una inspección visual de los espectros obtenidos para evaluar diferencias. Además, dado el bajo tiempo de retención que presenta esta molécula, tampoco fue posible su identificación por HPLC.

Se trabajó con los sobrenadantes de cultivos de 24 h de las cepas en MRS suplementado con DAB desde el inicio (muestras t24) y con los sobrenadantes de cultivos de 24 h de las cepas en MRS sin DAB, a los que se agregó DAB luego del final de la incubación (muestras t0, contienen la molécula de DAB intacta como estaba al inicio de la incubación). Mediante PCA se compararon entonces diferentes regiones de los espectros FTIR de las muestras t24 con los de las muestras t0. El agrupamiento diferencial de las muestras correspondientes a t24 con respecto a las muestras t0 a lo largo del espacio de los PCs indicaría la existencia de diferencias notorias en la molécula de DAB luego de la incubación con cada cepa bacteriana.

En la figura 1.14 se presentan los resultados obtenidos al comparar la región del espectro FTIR comprendida entre 1180 y 1750 cm-1 para las muestras t24 y t0 de las diferentes cepas. En el panel superior se observa que la cepa CIDCA 5317 presenta una clara diferenciación de los grupos correspondientes a las muestras t0 y t24 a lo largo de PC1 y de PC2, pudiendo afirmarse entonces que los espectros son diferentes, lo que podría deberse a cambios sufridos en la molécula de DAB durante la incubación con las bacterias. En el panel central se puede observar que para la cepa CIDCA 5310 el modelo no permite distinguir las muestras t0 y t24, ya que no parecería haber un agrupamiento diferencial de estos grupos, sino que se entremezclan (el mismo resultado se obtuvo realizando el PCA con otras regiones más acotadas del espectro FTIR). Por último, en el panel inferior se observa que en el caso de la cepa ATCC 314 también hay una distinción de las muestras t0 y t24 pero esta no resulta tan clara para todas las muestras correspondientes a t24.

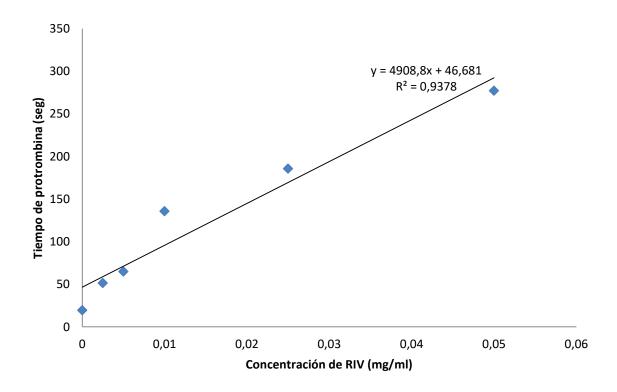
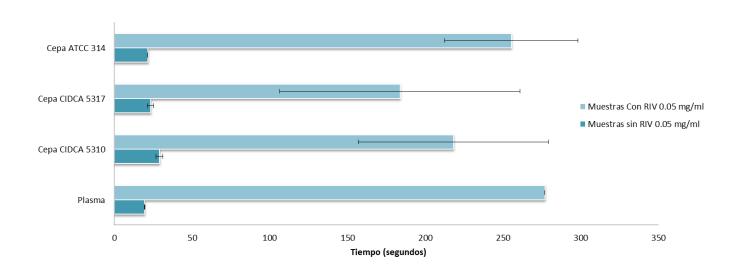


Figura 1.14. Diagrama de componentes principales realizado sobre la región 1180-1750 cm⁻¹ de los espectros FTIR de DAB en MRS, a 0 y 24 h de incubación con las cepas CIDCA 5317, CIDCA 5310 ó ATCC 314.


Ensayos funcionales

Con el objetivo de estudiar el efecto de las cepas sobre la actividad anticoagulante de RIV, se realizaron ensayos funcionales de medida del tiempo de protrombina. Cabe destacar que para esta droga no fue posible realizar la determinación por HPLC debido a su corto tiempo de retención, ni tampoco por FTIR dada la complejidad de la molécula. Entonces, siendo esta droga la única capaz de analizarse por ensayos funcionales de las tres en estudio, se realizó, en una primera instancia, una puesta a punto del método para poder detectar diferencias en los tiempos obtenidos con diferentes concentraciones de RIV. Se realizó una curva de calibración que se observa en la figura 1.15. Las concentraciones evaluadas (mg/ml) fueron: 0.05, 0.025, 0.010, 0.005, 0.0025, tomándose el valor de concentración 0 mg/ml el valor obtenido para el plasma sin agregados (19.5 ± 0.1 seg).

Figura 1.5. Tiempos de protrombina del plasma de un voluntario no medicado al que se le agregaron diferentes concentraciones de RIV.

Una vez ajustado el protocolo experimental, se procedió a la evaluación de las muestras correspondientes a las cepas incubadas durante 24 h con la droga en la concentración seleccionada en función de los resultados de viabilidad y crecimiento (0,05 mg/ml). Los resultados se observan en la figura 1.15. En primera instancia, se evidencia la diferencia entre los TP de las muestras con y sin anticoagulante, obteniéndose un promedio de 23,44 ± 4,11 seg para las muestras sin RIV y de 233,55 ± 41,14 seg para las muestras con RIV. Por otro lado, cuando las cepas son incubadas con RIV 0,05 mg/ml no se producen modificaciones del TP en comparación con el plasma control suplementado con la misma concentración de droga (Figura 1.16). Estos resultados no evidencian alteraciones de la funcionalidad de la droga luego de la incubación con las bacterias detectables por este método analítico.

Figura 1.16 Tiempos de protrombina del plasma de un voluntario no medicado al que se le agregaron los sobrenadantes de las tres cepas luego de 24 h de incubación con rivaroxabán 0,05 mg/ml y los respectivos controles sin RIV. Se observan los resultados representativos de dos experimentos independientes. Las barras corresponden a la desviación estándar de 3 medidas independientes.

5. Discusión

Con el aumento de reportes de efectos benéficos de los probióticos, su consumo ha incrementado exponencialmente en la población, así como resulta más frecuente su ingesta de manera concomitante con medicamentos. En este contexto, la interacción de microorganismos probióticos con anticoagulantes orales se encuentra aun escasamente estudiada (Lindh 2010). Es importante mencionar, que las personas que se encuentran bajo tratamiento con acenocumarol también deben llevar una dieta controlada. Algunos alimentos incluso, se encuentran restringidos, como aquellos que contienen altos niveles de vitamina K (Holmes, Hunt and Shearer 2012). Estas limitaciones estrictas no suceden con el dabigatrán y rivaroxabán ya que su farmacocinética y farmacodinámica resultan más predecibles. Recientemente se ha puesto el foco en componentes de los alimentos capaces de inhibir o potenciar, por ejemplo, enzimas del citocromo P450 involucradas en el metabolismo de estas drogas, que podrían afectar la efectividad de estos fármacos (Sánchez-Fuentes et al. 2022). Sin embargo, estos estudios son aún muy escasos y tanto los consumidores como los médicos necesitan más respuestas. En un escenario actual donde menos del 50 % de los pacientes recibe una dosis terapéutica ideal (Chen et al. 2022), cobra importancia el estudio del efecto de los microorganismos probióticos sobre los anticoagulantes y como podría afectar el tratamiento con estos fármacos.

En este trabajo de tesis evaluamos bacterias del género *Bifidobacterium* y *Lactobacillus*, géneros relevantes que frecuentemente se incluyen en formulaciones probióticas y asimismo, son miembros fundamentales de la microbiota normal de niños y adultos (Turroni *et al.* 2009; Bottacini *et al.* 2014; Sun *et al.* 2015; Redondo-Useros *et al.* 2019).

En este capítulo se utilizaron las técnicas de HPLC y FITR como enfoques analíticos complementarios para estudiar los efectos de los microorganismos sobre el AC. Además, se utilizó el FTIR para el caso del DAB y, para el RIV, se realizó un ensayo funcional para obtener datos de las posibles modificaciones del tiempo de protrombina que pudiesen inducir las bacterias, indicando una alteración del funcionamiento del fármaco. El uso de varias técnicas se debió principalmente a la imposibilidad de utilizar el HPLC para el caso de DAB y RIV, ya que su tiempo de retención resultaba muy corto, impidendo su separación del frente de corrida y por ende, su identificación en el cromatograma. De esta manera, se buscaron alternativas novedosas para evaluar la influencia de las bacterias.

Por un lado, el HPLC demostró que, el área del pico característico de AC disminuía en presencia de las bifidobacterias y que, además, aparecían nuevos picos. Estos hallazgos son compatibles con una biotransformación de AC en otros productos. Sin embargo, en presencia de los lactobacilos, se observó una disminución del área bajo la curva del pico de AC sin aparición de picos secundarios. Como la columna utilizada en la cromatografía separa compuestos de acuerdo a su polaridad (Ceresole *et al.* 2008), podemos hipotetizar

que los nuevos productos que aparecen luego de la incubación con ambas cepas de bifidobacterias son más polares que la molécula original ya que aparecen a tiempos de retención más cortos. Vale aclarar que, el análisis del espectro UV de estos picos es compatible con la aparición de nuevas especies y que, además, se pueden estar generando otras especies muy poco retenidas y que eluyan junto al frente siendo imposibles de identificar de manera individual. Esto último es válido también para la cepa ATCC 314, donde no se observaron picos secundarios.

Para descartar que lo observado se deba a un efecto del bajo pH producido por el metabolismo fermentativo de las bacterias, se testeó el efecto de un medio acidificado artificialmente y, en estas condiciones, tanto el tiempo de retención como el área del acenocumarol se mantuvieron invariantes. Esto ayudó a descartar la influencia de un pH bajo. También se podría pensar que el efecto observado se debe a la liberación de factores al medio durante el crecimiento. Por esto, se realizaron los mismos ensayos, pero con los sobrenadantes libres de células provenientes de los cultivos bacterianos. Pudimos corroborar que las modificaciones observadas no se debían tampoco a factores extracelulares liberados durante el crecimiento.

La espectrometría presenta grandes ventajas como su rapidez, bajo costo y su carácter no destructivo de las muestras (Biancolillo and Marini 2018). En este sentido, los resultados de FTIR permitieron ahondar en los cambios moleculares que sufría el AC en cultivo con las bacterias. Para acompañar el texto, se representa la molécula de AC en la figura 1.17. Primeramente, en la región de 1650 cm⁻¹, se pudo concluir que la altura de este pico se correlacionaba bien con las diferentes concentraciones de acenocumarol, por lo que se dedujo que podría ser un buen parámetro para evaluar biomodificaciones en la droga. Curiosamente, luego de 24 h de incubación con la cepa CIDCA 5310, aparece una nueva banda a 1720 cm⁻¹ que es compatible con una apertura del anillo de lactona y además se observa una disminución de la banda de 1110 cm⁻¹, relacionada al estiramiento del enlace C-O de la lactona. La apertura de dicho anillo como resultado de la actividad de la microbiota intestinal ya ha sido reportada para otra droga, la lovastatina, utilizada para reducir el colesterol sanguíneo (Yoo et al. 2014). Otro cambio observado en el espectro de FTIR, luego de la incubación con las bifidobacterias, fue una disminución del pico de 1390 cm⁻¹, asociado al grupo nitro. Es importante destacar aquí, que la relación de áreas de este pico y el de 1650 cm⁻¹ se mantuvieron constantes luego de 24 h de incubación. Por otro lado, para la cepa ATCC 314 se observan algunas diferencias respecto a lo obtenido para la cepa CIDCA 5310, destacándose la aparición de nuevos picos a 1280 cm⁻¹ y 1350 cm⁻¹, pudiéndose deber esto a las diferentes enzimas presentes en los microorganismos que puedan actuar sobre diferentes enlaces de la molécula en combinación de la presencia de un entorno distinto para la interacción de los enlace. Estos resultados refuerzan lo obtenido por HPLC, ya que la cepa ATCC 314 se diferenció en su comportamiento en comparación con las bifidobacterias.

Figura 1.17 Estructura molecular del acenocumarol.

El análisis por componentes principales es un método quimiométrico no supervisado que analiza las muestras sin sesgo del operador ya que no reconoce la naturaleza de éstas, y como resultado, se obtiene una imagen imparcial de la distribución de los datos (Biancolillo and Marini 2018). Puede utilizarse para encontrar relaciones entre diferentes variables, detectar valores atípicos, encontrar patrones, entre otros (Bro and Smilde 2014). El PCA reduce la dimensionalidad del set de datos mediante la definición de un nuevo conjunto de coordenadas (los componentes principales o PCs). Los PCs representan combinaciones lineales de las variables originales, que son ortogonales unas con otras y están diseñadas de manera tal que cada una da cuenta sucesivamente de la máxima variabilidad del conjunto de datos. El primer componente principal (PC1) representa la mayor proporción de la variabilidad en los datos, y cada componente sucesivo (PC2, PC3, etc.) da cuenta de la variabilidad restante. Mediante este procedimiento, además, se minimiza la pérdida de información relevante (Ringnér 2008). Además, cabe mencionar, que este método ya se ha utilizado para la evaluación de compuestos farmacéuticos ya sea en control de calidad o en la identificación de nuevos ingredientes farmacéuticos activos (APIs) (Biancolillo and Marini 2018).

Mediante el uso de esta herramienta, se pudo complementar lo obtenido en primera medida por FTIR para la cepa CIDCA 5310 y ATCC 314 luego de la incubación con AC. En el caso de la cepa CIDCA 5310, que presenta mayores diferencias en el espectro mediante la inspección visual de los picos y sus alturas relativas, existe un claro agrupamiento de las muestras a tiempo 0 h con respecto a las muestras de 24 h en el análisis por PCA. En cambio, para la cepa ATCC 314, que no se observaron grandes variaciones, la separación de las muestras en el gráfico bidimensional del PC1 vs PC2 resultó no ser muy clara. Por último, para el caso de la cepa CIDCA 5317 no se observaron diferencias con ninguno de los métodos de análisis planteados (inspección visual y PCA) por lo cual no fue incluida dentro de los resultados. SI bien se obtuvieron efectos similares para el caso de la cepa CIDCA 5310 y CIDCA 5317 por HPLC, el PCA demostró que no había diferencias entre las

muestras a tiempo 0 y 24 h. Esto puede explicarse teniendo en cuenta varios factores. En primer lugar la columna utilizada para HPLC en este caso, separó las moléculas de acuerdo a su polaridad. Entonces, la obtención de un mismo tiempo de retención no es necesariamente indicativo de una misma especie química, sino de una misma polaridad. Por otro lado, la cepa CIDCA 5317 podría interactuar de manera diferencial con el medio, generando esto una modificación en la energía vibracional de los enlaces de la molécula de AC, que finalmente repercutiría sobre el espectro obtenido.

Ya se encuentra descripto para modelos animales que evalúan amlodipina, un bloqueante de canales de calcio utilizado para la hipertensión arterial, que mientras una cepa de Lactobacillus (Lactiplantibacillus) plantarum aumentaba la biodisponibilidad de la droga, cepas de Bifidobacterium bifidum, lactis y longum disminuían su toxicidad (Purdel et al. 2023). Más aún, en el caso del paracetamol, se estudió que una cepa de L. reuteri era capaz de aumentar la biotransformación mientras que L. acidophilus, L. rhamnosus y Akkermansia muciniphila demostraron disminuir la hepatotoxicidad producida por este fármaco (Purdel et al. 2023). Esto pone de manifiesto los efectos diferenciales que pueden tener los microorganismos sobre una misma molécula, en concordancia con lo anteriormente planteado.

Debido a la gran complejidad del medio de cultivo de las muestras además de la complejidad de la molécula del etexilato de DAB (Figura 1.18), no fue posible reconocer cambios mediante comparación directa entre los espectros obtenidos por FTIR. Por esta razón se utilizó en este caso, el análisis por componentes principales, sin la comparación visual de los espectros.

Figura 1.18 Estructura molecular del etexilato de dabigatrán.

Con respecto a los resultados obtenidos, se puede destacar el comportamiento diferencial de las cepas. En primera instancia, tanto para la cepa CIDCA 5317 como para la cepa ATCC

314, se pueden discernir los datos obtenidos de las muestras a tiempo 0 h y 24 h indicando una modificación de la molécula de anticoagulante. Esto no es apreciable para el caso de la cepa CIDCA 5310. En este sentido, remarcamos que el compuesto utilizado no fue la droga pura sino la prodroga, el etexilato de DAB, la forma farmacéutica que compone los comprimidos. La conversión a la forma activa la lleva a cabo de manera rápida y casi total, una esterasa ubicua del intestino, siendo las esterasas hepáticas y plasmáticas las responsables de finalizar la conversión del remanente absorbido de estas moléculas (Hankey and Eikelboom 2011). Teniendo en cuenta la expresión de estas enzimas, entre otras, por parte de las bacterias, podríamos pensar que esta modificación de la prodroga es factible que ocurra en nuestro sistema de estudio pero que no necesariamente incurriría en una modificación de la capacidad anticoagulante de la misma. De todas maneras, podría generar mayor conversión a la forma activa, aumentando su concentración plasmática final. Cabe agregar que dada la complejidad del análisis y que la mayoría de los reportes optan por utilizar metodologías MS/MS, no es posible utilizar el HPLC como control de rutina en este estudio. Al momento de la redacción de este trabajo no se encuentran artículos que relacionen la actividad de los probióticos sobre el DAB.

El uso del coagulómetro semi automático para medir el tiempo de protrombina reveló valiosa información acerca de posibles modificaciones del RIV que impacten directamente en su función anticoagulante. En este sentido es importante destacar que para el AC no es posible realizar este tipo de ensayos como se encuentran planteados en este trabajo, ya que, debido a su farmacodinamia, el plasma de paciente no medicado no se verá alterado al agregarse esta droga ya que todos los factores dependientes de la vitamina K se encontrarán carboxilados y consecuentemente activados. En cambio, al ser tanto el DAB como el RIV inhibidores directos de factores de la cascada de coagulación, el agregado *a posteriori* de la droga sobre el plasma si modifica el tiempo de protrombina medido. Al contar con el etexilato de DAB como se mencionó anteriormente, no fue posible realizar estos ensayos con esta molécula.

Entonces, para el RIV, primero se logró optimizar el método para realizar las medidas correspondientes y luego se analizaron las muestras de las cepas incubadas 24 h con RIV 0,05 mg/ml. Aquí fue interesante encontrar que no se detectaron alteraciones del tiempo de protrombina con las muestras de las cepas incubadas con la droga, indicando que la función anticoagulante no fue perturbada por la presencia de los microorganismos. Cabe destacar que, si bien la función no se encuentra modificada, no es posible saber si la molécula sufrió alteraciones, ya que lo metabolitos derivados podrían tener la misma actividad anticoagulante o no ser diferenciados por esta técnica. La estructura molecular del rivaroxabán se ilustra en la figura 1.19.

Integrando estos resultados, para el AC, nuestras observaciones son compatibles con una biomodificación de la droga por parte de los microorganismos que posiblemente involucre primariamente al anillo de lactona. Como resultado, la actividad anticoagulante podría verse afectada, considerando que el anillo antes mencionado forma parte del núcleo cumarínico necesario para ejercer su efecto (Thijssen, Baars and Reijnders 1983; Kasperkiewicz *et al.* 2020).

Ya ha sido descripta la ruta para la metabolización del acenocumarol *in vivo*, e involucra principalmente enzimas hepáticas que funcionan oxidando y reduciendo a la molécula (Lopez de Luca 2006, Kasperkiwicz 2020). Las reducciones del grupo nitro lo convierten en una amina, así como las del grupo cetona en un grupo hidroxilo, mientras que las oxidaciones llevan a 6- y 7- hidroxi metabolitos (Kasperkiewicz *et al.* 2020).

Asimismo, Leonart y colaboradores, utilizando un método de detección UPLC-MS, describieron nuevas moléculas en orina humana luego de la metabolización de la cumarina (Leonart *et al.* 2017). Estos nuevos metabolitos incluían resultados de hidroxilaciones, glucuronidación, sulfataciones, metilaciones y conjugaciones con Nacetilcisteína, demostrando la propensión que tiene la molécula a ser modificada por diversas enzimas. Estos resultados se encuentran alineados con nuestras observaciones del análisis por HPLC, dado que los nuevos picos detectados correspondían a moléculas más polares que la original.

Por otro lado, estos resultados están en concordancia con estudios previos que reportan el efecto de enzimas bacterianas sobre diversos compuestos. En este contexto, podemos nombrar enzimas tales como reductasas, esterasas e hidrolasas que fueron descriptas tanto en bifidobacterias como lactobacilos (McBain and Macfarlane 1998; Nakamura et al. 2002; Fritsch et al. 2017; Manasian et al. 2020). Un tipo particular de esterasas, las lactonohidrolasas, han sido descriptas en varios microorganismos tanto bacterias como hongos, como enzimas capaces de romper el anillo de lactona (Shimizu et al. 2001). Además, cabe mencionar que, para *Acinetobacter calcoaceticus* se identificó en particular

una enzima perteneciente a la familia de las serina esterasas que era capaz de hidrolizar el anillo de lactona de la dihidrocumarina (Shimizu *et al.* 2001), parte esencial de la molécula de acenocumarol. Si bien hasta el momento no se han reportado estas enzimas en bacterias pertenecientes al género *Lactobacillus* o *Bifidobacterium*, sí se encuentran registros de cepas de *Lactobacillus* transformadas exitosamente con plásmidos conteniendo el gen de una lactonohidrolasa fúngica (Yang *et al.* 2017).

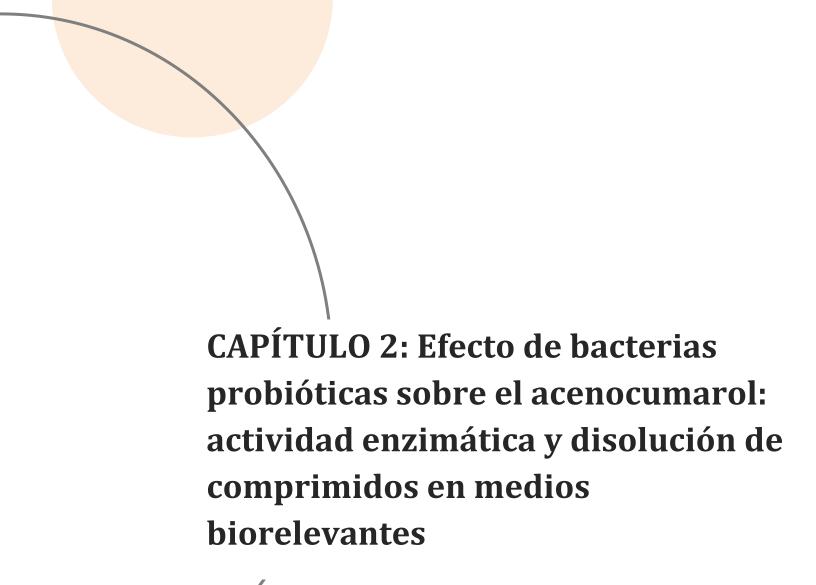
Si revisamos la molécula de la droga en detalle podemos identificar diversos grupos funcionales tales como -OH, -NO₂, -C=O que pueden ser blancos de las enzimas mencionadas previamente. Es evidente que los cambios en la molécula de AC relacionados a la actividad enzimática de las bacterias, podría generar un impacto en su actividad como anticoagulante. En el caso del etexilato de DAB. también la molécula presenta varios enlaces susceptibles a ser modificados por las bacterias, como –NH₂, -C=O y –NH (Cai, Hou and Kong 2016).

Sin embargo, no se puede pasar por alto que el escenario *in vivo* incluye variables adicionales; interacciones entre la droga, la microbiota, alimentos y células de la mucosa gastrointestinal (Bailey and Dresser 2004; Sousa *et al.* 2008; Frans G.M. Russel 2010; Stojančević *et al.* 2014; Enright *et al.* 2017; Koziolek *et al.* 2019). Es sabido que los microorganismos son capaces de alterar la expresión de transportadores en el intestino, impactando en este sentido en la biodisponibilidad de diferentes compuestos (Matušková 2011; Saksena *et al.* 2011; Stojančević *et al.* 2014). Por otro lado, modulan la expresión de citoquinas (Azad, Sarker and Wan 2018; Yousefi *et al.* 2019; Wang *et al.* 2020) que pueden alterar la permeabilidad, el metabolismo y el transporte de drogas(Bertilsson, Olsson and Magnusson 2001; Vee *et al.* 2009; Thagia *et al.* 2015).

Por otra parte, el consumo de alimentos probióticos junto con anticoagulantes en pacientes con patologías que retrasan la absorción como colitis ulcerosa, enfermedad de Crohn y enfermedad intestinal inflamatoria, podría potenciar esta biotransformación de las drogas dado que aumenta el tiempo de residencia de la misma en el tracto intestinal (Hatton *et al.* 2018).

En conclusión, nuestros resultados muestran que tanto las bifidobacterias como los lactobacilos no parecen afectar la función anticoagulante del rivaroxabán. En este sentido es importante mencionar que al momento de la escritura de este trabajo no se han encontrado reportes de actividad de microorganismos sobre esta droga. Por otro lado, las bacterias pueden modificar a la molécula de acenocumarol y tanto la cepa CIDCA 5317 como ATCC 314, al etexilato de dabigatrán. Este efecto podría llevar a cambios significativos en la cantidad de droga absorbida lo cual se reflejaría en una menor concentración plasmática. Esto agregaría un aspecto relevante a ser considerando en la farmacología de dichas drogas.

7. Bibliografía


- Azad MAK, Sarker M, Wan D. Immunomodulatory Effects of Probiotics on Cytokine Profiles. *Biomed Res Int* 2018;**2018**, DOI: 10.1155/2018/8063647.
- Bailey DG, Dresser GK. Interactions between grapefruit juice and cardiovascular drugs. *Am J Cardiovasc Drugs* 2004;**4**:281–97.
- Bertilsson PM, Olsson P, Magnusson KE. Cytokines influence mRNA expression of cytochrome P450 3A4 and MDRI in intestinal cells. *J Pharm Sci* 2001;**90**:638–46.
- Biancolillo A, Marini F. Chemometric methods for spectroscopy-based pharmaceutical analysis. *Front Chem* 2018;**6**:1–14.
- Blech S, Ebner T, Ludwig-Schwellinger E, Stangier J, Roth W. The metabolism and disposition of the oral direct thrombin inhibitor, dabigatran, in humans. *Drug Metab Dispos* 2008;**36**:386–99.
- Bottacini F, Ventura M, Sinderen D van, Motherway MOC. Diversity, ecology and intestinal function of bifidobacteria. *Microb Cell Fact* 2014;**13**, DOI: 10.1186/1475-2859-13-S1-S4.
- Bro R, Smilde AK. Principal component analysis. *Anal Methods* 2014;**6**:2812–31.
- Cai Z-Q, Hou X, Kong D-L. Synthesis, crystal structural, and spectral characterisation of dabigatran etexilate tetrahydrate. *J Chem Res* 2016;**40**.
- Ceresole R, Rosasco MA, Forastieri CC, Segall AI. HPLC determination of acenocoumarol and its major thermal degradation product. *J Liq Chromatogr Relat Technol* 2008;**31**:179–87.
- Chen W, Qian J, Fu J, Wu T, Lv M, Jiang S, Zhang J. Changes in the Gut Microbiota May Affect the Clinical Efficacy of Oral Anticoagulants. *Front Pharmacol* 2022;**13**, DOI: 10.3389/fphar.2022.860237.
- Chen X, Jin DY, Stafford DW, Tie JK. Evaluation of oral anticoagulants with vitamin K epoxide reductase in its native milieu. *Blood* 2018;**132**:1974–84.
- Dias de Queirós L, Rejane Alves de Ávila A, Vianna Botaro A, Branta Lopes Chirotto D, Alves Macedo J, Alves Macedo G. Combined isoflavones biotransformation increases the bioactive and antioxidant capacity of soymilk. *Appl Microbiol Biotechnol* 2020, DOI: 10.1007/s00253-020.
- Enright EF, Joyce SA, Gahan CGM, Griffin BT. Impact of gut microbiota-mediated bile acid metabolism on the solubilization capacity of bile salt micelles and drug solubility. *Mol Pharm* 2017;**14**:1251–63.
- Frans G.M. Russel. Transporters: Importance in Drug Absorption, Distribution, and Removal. Book: Enzyme- and Transporter-Based Drug-Drug Interactions: Progress and Future Challenges. 2010, 27–49.
- Fritsch C, Jänsch A, Ehrmann MA, Toelstede S, Vogel RF. Characterization of Cinnamoyl Esterases from Different Lactobacilli and Bifidobacteria. *Curr Microbiol* 2017;**74**:247–56.

- Gomez Zavaglia A, Kociubinski G, Pérez P, De Antoni G. Isolation and characterization of Bifidobacterium strains for probiotic formulation. *J Food Prot* 1998;**61**.
- Hankey GJ, Eikelboom JW. Dabigatran etexilate: A new oral thrombin inhibitor. *Circulation* 2011;**123**:1436–50.
- Hatton GB, Madla CM, Rabbie SC, Basit AW. All disease begins in the gut: Influence of gastrointestinal disorders and surgery on oral drug performance. *Int J Pharm* 2018;**548**:408–22.
- Holmes M V., Hunt BJ, Shearer MJ. The role of dietary vitamin K in the management of oral vitamin K antagonists. *Blood Rev* 2012;**26**:1–14.
- Hubert Joe I, Kostova I, Ravikumar C, Amalanathan M, Pînzaru SC. Theoretical and vibrational spectral investigation of sodium salt of acenocoumarol. *J Raman Spectrosc* 2009;**40**:1033–8.
- Johnson LR. Essential Medical Physiology. Third Edir. Elsevier(USA), 2003.
- Jourova L, Anzenbacher P, Anzenbacherova E. Human gut microbiota plays a role in the metabolism of drugs. *Biomed Pap* 2016;**160**:317–26.
- Jung DH, Seo DH, Kim YJ, Chung WH, Nam Y Do, Park CS. The presence of resistant starch-degrading amylases in Bifidobacterium adolescentis of the human gut. *Int J Biol Macromol* 2020;**161**:389–97.
- Karci F, Ertan N. Synthesis of some novel hetarylazo disperse dyes derived from 4-hydroxy-2H-1-benzopyran-2-one (4-hydroxycoumarin) as coupling component and investigation of their absorption spectra. *Dye Pigment* 2005;**64**:243–9.
- Kasperkiewicz K, Ponczek MB, Owczarek J, Guga P, Budzisz E. Antagonists of Vitamin K-popular coumarin drugs and new synthetic and natural coumarin derivatives. *Molecules* 2020;**25**, DOI: 10.3390/molecules25061465.
- Kato R, Yuasa H, Inoue K, Iwao T, Tanaka K, Ooi K, Hayashi Y. Effect of Lactobacillus casei on the absorption of nifedipine from rat small intestine. *Drug Metab Pharmacokinet* 2007;**22**:96–102.
- Kim JA, Bayo J, Cha J, Choi YJ, Jung MY, Kim DH, Kim Y. Investigating the probiotic characteristics of four microbial strains with potential application in feed industry. *PLoS One* 2018;**14**:1–16.
- Kojic M, Fira D, Banina A, Topisirovic L. Characterization of the cell wall-bound proteinase of Lactobacillus casei HN14. *Appl Environ Microbiol* 1991;**57**:1753–7.
- Koziolek M, Alcaro S, Augustijns P, Basit AW, Grimm M, Hens B, Hoad CL, Jedamzik P, Madla CM, Maliepaard M, Marciani L, Maruca A, Parrott N, Pávek P, Porter CJH, Reppas C, van Riet-Nales D, Rubbens J, Statelova M *et al.* The mechanisms of pharmacokinetic food-drug interactions A perspective from the UNGAP group. *Eur J Pharm Sci* 2019, DOI: 10.1016/j.ejps.2019.04.003.
- Lee HJ, Zhang H, Orlovich D a., Fawcett JP. The influence of probiotic treatment on sulfasalazine metabolism in rat. *Xenobiotica* 2012;**42**:791–7.
- Leonart LP, Gasparetto JC, Pontes FLD, Cerqueira LB, De Francisco TMG, Pontarolo R. New

- metabolites of coumarin detected in human urine using ultra performance liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry. *Molecules* 2017;**22**, DOI: 10.3390/molecules22112031.
- Lindh J. Possible interaction between probiotics and warfarin. *Lakartidningen* 107(13-14):917. 2010.
- Manasian P, Bustos A-S, Pålsson B, Håkansson A, Peñarrieta JM, Nilsson L, Linares-Pastén JA. First Evidence of Acyl-Hydrolase/Lipase Activity From Human Probiotic Bacteria: Lactobacillus rhamnosus GG and Bifidobacterium longum NCC 2705. Front Microbiol 2020;**11**:1–11.
- Matuskova Z, Anzenbacherova E, Vecera R, Tlaskalova-Hogenova H, Kolar M, Anzenbacher P. Administration of a probiotic can change drug pharmacokinetics: Effect of E. coli Nissle 1917 on amidarone absorption in rats. *PLoS One* 2014;**9**:3–7.
- Matušková Z et al. Effects of Lactobacillus casei on the expression and the activity of cytochromes P450 and on the CYP mRNA level in the intestine and the liver of male rats. *Neuroendocr Lett* 2011;**32**:8–14.
- Matušková Z, Šiller M, Tunková A, Anzenbacherová E, Zachařová A, Hogenová HT, Zídek Z, Anzenbacher P. Effects of Lactobacillus casei on the expression and the activity of cytochromes P450 and on the CYP mRNA level in the intestine and the liver of male rats. *Neuroendocrinol Lett* 2011;**32**:8–14.
- McBain AJ, Macfarlane GT. Ecological and physiological studies on large intestinal bacteria in relation to production of hydrolytic and reductive enzymes involved in formation of genotoxic metabolites. *J Med Microbiol* 1998;**47**:407–16.
- Modrackova N, Vlkova E, Tejnecky V, Schwab C, Neuzil-Bunesova V. Bifidobacterium β-glucosidase activity and fermentation of dietary plant glucosides is species and strain specific. *Microorganisms* 2020;**8**:1–16.
- Nakamura J, Kubota Y, Miyaoka M, Saitoh T, Mizuno F, Benno Y. Comparison of four microbial enzymes in Clostridia and bacteroides isolated from human feces. *Microbiol Immunol* 2002;**46**:487–90.
- O'Callaghan A, van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. *Front Microbiol* 2016;**7**, DOI: 10.3389/fmicb.2016.00925.
- O'Callaghan J, O'Toole PW. Lactobacillus: Host-microbe relationships. *Curr Top Microbiol Immunol* 2013;**358**:119–54.
- Ordovás Baines JP, Climent Grana E, Jover Botella A, Valero García I. Farmacocinética y farmacodinamia de los nuevos anticoagulantes orales. *Farm Hosp* 2009;**33**:125–33.
- Pérez PF, Minnaard Y, Disalvo EA, De Antoni GL. Surface properties of bifidobacterial strains of human origin. *Appl Environ Microbiol* 1998;**64**:21–6.
- Pokusaeva K, Fitzgerald GF, Van Sinderen D. Carbohydrate metabolism in Bifidobacteria. *Genes Nutr* 2011;**6**:285–306.
- Pulix M, Lukashchuk V, Smith DC, Dickson AJ. Molecular characterization of HEK293 cells as

- emerging versatile cell factories. Curr Opin Biotechnol 2021;71:18-24.
- Purdel C, Ungurianu A, Adam-Dima I, Margină D. Exploring the potential impact of probiotic use on drug metabolism and efficacy. *Biomed Pharmacother* 2023;**161**, DOI: 10.1016/j.biopha.2023.114468.
- Redondo-Useros N, Gheorghe A, Díaz-Prieto LE, Villavisencio B, Marcos A, Nova E. Associations of Probiotic Fermented Milk (PFM) and Yogurt Consumption with Bifidobacterium and Lactobacillus Components of the Gut Microbiota in Healthy Adults. 2019, DOI: 10.3390/nu11030651.
- Ringnér M. What is principal components analysis? Nat Biotechnol 2008;26:3–16.
- Saksena S, Goyal S, Raheja G, Singh V, Akhtar M, Nazir TM, Alrefai W a, Gill RK, Dudeja PK. Upregulation of P-glycoprotein by probiotics in intestinal epithelial cells and in the dextran sulfate sodium model of colitis in mice. *Am J Physiol Gastrointest Liver Physiol* 2011;**300**:G1115–23.
- Sánchez-Fuentes A, Rivera-Caravaca JM, López-Gálvez R, Marín F, Roldán V. Non-vitamin K Antagonist Oral Anticoagulants and Drug-Food Interactions: Implications for Clinical Practice and Potential Role of Probiotics and Prebiotics. *Front Cardiovasc Med* 2022;**8**, DOI: 10.3389/fcvm.2021.787235.
- Saraeva R, Paskaleva ID, Doncheva E, Eap CB, Ganev VS. Pharmacogenetics of acenocoumarol: CYP2C9, CYP2C19, polymorphisms and dose requirements. *J Clin Pharm Ther* 2007;**32**:641–9.
- Selwyn FP, Cheng SL, Klaassen CD, Cui JY. Regulation of hepatic drug-metabolizing enzymes in germ-free mice by conventionalization and probiotics. *Drug Metab Dispos* 2016;**44**:262–74.
- Shimizu S, Kataoka M, Honda K, Sakamoto K. Lactone-ring-cleaving enzymes of microorganisms: their diversity and applications. 2001;**92**:187–94.
- Sousa T, Paterson R, Moore V, Carlsson A, Abrahamsson B, Basit AW. The gastrointestinal microbiota as a site for the biotransformation of drugs. *Int J Pharm* 2008;**363**:1–25.
- Stojančević M, Bojić G, Al Salami H, Mikov M. The influence of intestinal tract and probiotics on the fate of orally administered drugs. *Curr Issues Mol Biol* 2014;**16**:55–67.
- Sun Z, Zhang W, Guo C, Yang X, Liu W, Wu Y, Song Y, Yu Kwok L, Cui Y, Menghe B, Yang R, Hu L, Zhang H. Comparative Genomic Analysis of 45 Type Strains of the Genus Bifidobacterium: A Snapshot of Its Genetic Diversity and Evolution. 2015, DOI: 10.1371/journal.pone.0117912.
- Tan E, Chin CSH, Lim ZFS, Ng SK. HEK293 Cell Line as a Platform to Produce Recombinant Proteins and Viral Vectors. *Front Bioeng Biotechnol* 2021;**9**:1–9.
- Tassies D, Freire C, Pijoan J, Maragall S, Monteagudo J, Ordinas A, Reverter JC. Pharmacogenetics of acenocoumarol: Cytochrome P450 CYP2C9 polymorphisms influence dose requirements and stability of anticoagulation. *Haematologica* 2002;**87**:1185–91.
- Thagia I, Shaw EJ, Smith E, Else KJ, Rigby RJ. Intestinal epithelial suppressor of cytokine signaling 3 enhances microbial-induced inflammatory tumor necrosis factor-α, contributing to epithelial

- barrier dysfunction. Am J Physiol Gastrointest Liver Physiol 2015;308:G25-31.
- Thijssen HHW, Baars LG, Reijnders MJ. Acenocoumarol and its amino and acetamido metabolites. Comparative pharmacokinetics and pharmacodynamics in the rat. *J Pharm Pharmacol* 1983;**35**:793–8.
- Tie JK, Stafford DW. Functional Study of the Vitamin K Cycle Enzymes in Live Cells. *Methods in Enzymology*. Vol 584. Academic Press Inc., 2017a, 349–94.
- Tie JK, Stafford DW. Functional Study of the Vitamin K Cycle Enzymes in Live Cells. 1st ed. Elsevier Inc., 2017b.
- Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A, Merusi P, Cagnasso P, Bizzarri B, De'Angelis GL, Shanahan F, Van Sinderen D, Ventura M. Exploring the diversity of the bifidobacterial population in the human intestinal tract. *Appl Environ Microbiol* 2009;**75**:1534–45.
- Ufer M. Comparative Pharmacokinetics of Vitamin K Antagonists. *Clin Pharmacokinet* 2005;**44**:1227–46.
- Vee M Le, Lecureur V, Stieger B, Fardel O. Regulation of drug transporter expression in human hepatocytes exposed to the proinflammatory cytokines tumor necrosis factor- α or interleukin-6. *Drug Metab Dispos* 2009;**37**:685–93.
- Vranckx P, Valgimigli M, Heidbuchel H. The significance of drug-drug and drug-food interactions of oral anticoagulation. *Arrhythmia Electrophysiol Rev* 2018;**7**:55–61.
- Wang B, Hussain A, Zhou Y, Zeng Z, Wang Q, Zou P, Gong L, Zhao P, Li W. Saccharomyces boulardii attenuates inflammatory response induced by Clostridium perfringens via TLR4/TLR15-MyD8 pathway in HD11 avian macrophages. *Poult Sci* 2020;**99**:5356–65.
- Wilkinson EM, Ilhan ZE, Herbst-Kralovetz MM. Microbiota—drug interactions: Impact on metabolism and efficacy of therapeutics. *Maturitas* 2018;**112**:53–63.
- Yang WC, Hsu TC, Cheng KC, Liu JR. Expression of the Clonostachys rosea lactonohydrolase gene by Lactobacillus reuteri to increase its zearalenone removing ability. *Microb Cell Fact* 2017:1–11.
- Yoo DH, Kim IS, Van Le TK, Jung IH, Yoo HH, Kim DH. Gut microbiota-mediated drug interactions between lovastatin and antibiotics. *Drug Metab Dispos* 2014;**42**:1508–13.
- Yousefi B, Eslami M, Ghasemian A, Kokhaei P, Salek Farrokhi A, Darabi N. Probiotics importance and their immunomodulatory properties. *J Cell Physiol* 2019;**234**:8008–18.

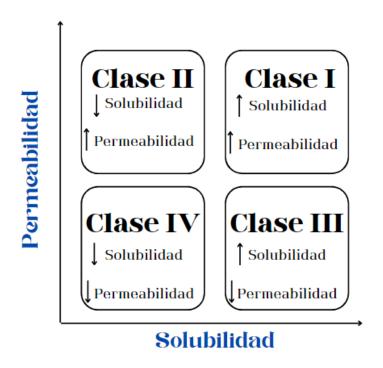
1. Introducción

La interacción compleja entre los microorganismos y las drogas anticoagulantes nos lleva a explorar diversas variables. En este sentido, en el primer capítulo, concluimos que dicha interacción en condiciones de cultivo *in vitro* en MRS llevaba a una disminución de la concentración del anticoagulante acenocumarol, fármaco elegido para continuar nuestros estudios. Esta elección se basa principalmente en que es el fármaco anticoagulante más utilizado en nuestro país y que fue la droga biomodificada por las 3 cepas en las condiciones evaluadas.

La disminución de la concentración observada de la droga luego de 24 h de incubación con las cepas estudiadas nos podría indicar la presencia de enzimas capaces de actuar sobre la molécula como ya se ha discutido en el capítulo precedente. Sin embargo, no podemos dejar de lado el hecho de que las bacterias también son capaces de modificar su entorno ya sea por modificación de componentes del medio como por liberación de metabolitos producto de su crecimiento, además de la liberación al medio de sistemas enzimáticos durante la lisis celular.

Dado que la capacidad demostrada de los microorganismos de modificar el acenocumarol podría tener diferentes consecuencias que impactarían finalmente en el efecto de la droga, en este capítulo se abordarán estudios de actividad enzimática a tiempos cortos de incubación y ensayos de disolución de comprimidos de acenocumarol, con el objeto de evaluar no solo los efectos de la interacción directa bacteria-droga, sino también evaluar la interacción con un entorno modificado por la actividad bacteriana. Como se ha mencionado en el capítulo introductorio, la composición del espacio luminal está determinada por diversos factores como la microbiota y el balance de sales biliares que podrían determinar la solubilización de la drogas (Enrigh 2017).

En humanos la absorción de acenocumarol se realiza de forma rápida alcanzando el pico de concentración plasmática entre 1 – 3 h luego de la toma de la dosis indicada (Goodman and Gilman 2018). Es por eso que en este capítulo se usarán tiempos que reflejen, *in vitro*, lo que ocurre a nivel fisiológico *in vivo*, asemejando el tiempo en que las bacterias y el fármaco se encuentran coexistiendo en el ambiente intestinal.


Ya es sabido que las bacterias presentes en el tracto gastrointestinal tienen la capacidad de modificar a diversas moléculas de fármacos a través de enzimas, pudiendo mencionar a la hidrólisis y las reducciones, así como también a las dehidroxilaciones y epimerizaciones. En un estudio realizado por Zimmermann y colaboradores, se evaluó la capacidad de 76 bacterias de origen humano de modificar 271 drogas en un modelo de ratón, encontrándose que las mismas tenían la capacidad de modificar 176 de estas moléculas

alterando así su metabolismo (Zimmermann *et al.* 2019). Además se observó que varios grupos funcionales predisponen a las moléculas del fármaco a ser modificadas entre los que se encuentran: lactonas, grupos nitro y azo (Zimmermann *et al.* 2019).

El abordaje integral del estudio de la actividad enzimática bacteriana debe incluir los sistemas enzimáticos intracelulares, dado que estos podrían actuar sobre la droga al ganar acceso a la luz intestinal durante los procesos de lisis bacteriana (comunes durante el ciclo biológico de los microorganismos), o bien al ingresar la molécula al interior celular mediante los sistemas de transporte. La ruptura de las estructuras celulares mediante ultrasonido permite la liberación al medio de compuestos intracelulares, entre ellas las enzimas, resultando de esta manera una herramienta útil y de fácil aplicación en cultivos bacterianos.

En cuanto a la absorción de un fármaco desde su forma farmacéutica (comprimido, cápsula), tras la administración oral, ésta depende de la liberación de la sustancia medicinal de la forma farmacéutica en sí, de la disolución o solubilización del fármaco bajo condiciones fisiológicas y del transporte en el sistema gastrointestinal (Food and Drug Administration 2017). De esta manera, los ensayos de disolución *in vitro* pueden modelar parte del comportamiento de la droga *in vivo*. En la industria farmacéutica estos estudios tienen mucha relevancia ya sea cuando se está desarrollando un nuevo fármaco o en controles de calidad (Dressman *et al.* 1998) y resultan un eslabón clave en los estudios de biodisponibilidad y efectividad terapéutica.

El Sistema de Clasificación Biofarmacéutica (SCB) agrupa los fármacos en función de los parámetros de solubilidad y permeabilidad intestinal, los cuales se encuentran fuertemente relacionados con el proceso de absorción (Tsume *et al.* 2014; Samineni, Chimakurthy and Konidala 2022). Así, se pueden encontrar cuatro grupos que se detallan en la figura siguiente:

Figura 2.1 Clasificación de fármacos según el Sistema de Clasificación Biofarmacéutica en base a su solubilidad y permeabilidad. Adaptado de Talevi y colaboradores (Talevi 2020).

Los tres fármacos anticoagulantes presentes en esta tesis se clasifican como clase II, esto quiere decir que presentan baja solubilidad y alta permeabilidad, como se ilustra en la figura 2.1. Para esta clase de fármacos, la limitación en la absorción oral está dada por la baja tasa de disolución (Dressman *et al.* 1998). En términos fisiológicos, la velocidad de absorción es más rápida que la velocidad de disolución, por lo que esta última controla a la primera (Baena and Ponce D´león 2008).

Para estas drogas, es importante poder simular y reconstruir lo más exacto posible lo que sucede en el medio gastrointestinal al momento de la ingesta del medicamento ya que como mencionamos es la disolución *in vivo* lo que determina la absorción. En este punto es importante destacar que no sólo nos referimos a la composición del medio (pH, capacidad buffer, fuerza iónica, surfactantes), sino a su volumen y a la hidrodinámica del contenido luminal. De esta manera, los resultados obtenidos *in vitro* serán más significativos a la hora de predecir el comportamiento *in vivo* (Dressman *et al.* 1998; Galia *et al.* 1998).

Para la realización de este tipo de ensayos actualmente se encuentran disponibles siete tipos diferentes de equipos de disolución definidos por la Farmacopea de Estados Unidos

(United States Pharmacopeia 2011); de canasta, de paletas, de cilindro alternativo, de flujo a través de celda, de paleta sobre disco, de cilindro rotatorio y de disco alternativo. De los siete mencionados, el de canasta (Tipo I) y de paletas (Tipo 2) son los más comúnmente utilizados en las formulaciones solidas (United States Pharmacopeia 2011). En el presente trabajo de tesis se utilizaron dos aproximaciones experimentales para los ensayos de disolución siendo una de ellas abordada con la utilización de un equipo tipo 2 como el de la figura que se muestra a continuación (Figura 2.2).

Figura 2.2 Equipo disolutor de paletas Vision Classic 6. Foto extraída de la página del fabricante:

https://www.teledynehanson.com/dissolution-testing/vision-classic-6

Los datos de disolución y biodisponibilidad de una droga, junto con los datos químicos, de producción y de control, caracterizan la calidad y el rendimiento del producto farmacéutico (Food and Drug Administration 2017).

En general los ensayos de disolución se realizan en buffers a diferentes pHs que representen la variación de este parámetro en el intestino, y, dependiendo de la clasificación del fármaco (Figura 2.1), se determinarán la cantidad de puntos a tomar en el

estudio. Sin embargo, los medios estandarizados no siempre permiten predecir el comportamiento *in vivo* de los fármacos por lo que existen otras alternativas llamadas medios biorrelevantes o biopredictivos. Dentro de los medios biorrelevantes, encontramos al Fessif, por sus siglas en inglés Fed State Simulated Intestinal Fluid, propuesto por Dressman y colaboradores (Dressman *et al.* 1998), justamente con el objetivo de realizar ensayos de disolución cuyos resultados correlacionasen mejor con la situación *in vivo* de las condiciones postprandiales del fluido intestinal. En este mismo trabajo se propusieron otros medios como el Fassif (Del inglés Fasted State Simulated Intestinal Fluid), que, como indican sus siglas se correspondería con un estado preprandial. El uso de uno u otro medio para los estudios debe ajustarse con las condiciones reales de toma de la medicación. La diferencia principal entre ambos se encuentra en el pH (6,8 para Fassif vs 5,0 para Fessif), y la cantidad de bilis y lecitina propuestas siendo éstas mayores en el medio de simulación postprandial correspondiéndose con los cambios fisiológicos luego de la ingesta de alimentos (Dressman *et al.* 1998).

Tabla 2.1 Composición del medio Fessif original propuesto por Dressman y colaboradores.

Componente	Concentración final
Ácido acético	0,144 M
NaOH	pH 5
Taurocolato de sodio	15 mM
Lecitina	4 mM
KCI	0,19 M
H_2O	11

Desde la introducción de estos medios se han propuesto varias modificaciones, intentando en primera instancia mejorar la simulación del contenido luminal, y por otro lado, evaluar opciones que faciliten su preparación y disminuyan su costo (Vertzoni *et al.* 2004; Clarysse *et al.* 2011). Si bien en su formulación original los autores proponen el uso de taurocolato de sodio como sal representativa del contenido intestinal, ya que es la que se encuentra en mayor proporción, en la preparación del medio resulta el reactivo más

costoso. En este sentido se ha cuestionado, no solamente el uso de una sola sal, sino alternativas menos costosas como el uso del producto crudo en vez de puro (Clarysse *et al.* 2011). Por otro lado, Jantratid y colaboradores (Jantratid *et al.* 2008), propusieron una actualización del Fessif generando medios que reflejen el cambio del contenido intestinal en el tiempo durante la digestión, medios a los que llamaron Fessif temprano, Fessif medio y Fessif tardío. Más aún, propusieron un medio que englobe estas tres etapas, Fessif V2, que comparando con el Fessif original, contiene además productos de la digestión de lípidos (Jantratid *et al.* 2008).

Al momento de la redacción de esta tesis, no se han encontrado registros de estudio del acenocumarol en medio Fessif, ni del efecto de microorganismos probióticos sobre el mismo.

El objetivo del presente capítulo fue estudiar el efecto de la dotación enzimática bacteriana sobre el acenocumarol y su relación con la disolución de la droga en su forma farmacéutica. Como ya se mencionó, para el acenocumarol la disolución gobierna el proceso de absorción por lo que nuestros estudios se tornan relevantes para completar otra dimensión de la interacción bacteria-anticoagulante.

2. Materiales y Métodos

2.1 Evaluación de la actividad enzimática sobre el acenocumarol

2.1.1 Incubación de bacterias con AC en PBS

Partiendo de un cultivo de 24 h de las cepas crecidas en anaerobiosis en medio MRS + cisteína (0,05 %p/v) a 37 °C, se realizó la lectura de DO de los cultivos a 600 nm para ajustarse DO= 2, y las muestras se centrifugaron 5 min a 3550 g. Luego se procedió a realizar 3 lavados con PBS.

Los pellets obtenidos se suspendieron en PBS + AC (0,16 mg/ml). Esta solución se prepara una sola vez para evitar errores, agregándose luego como componente adicional solamente la cisteína (0,05 % p/v).

Las muestras se incubaron 1 h en anaerobiosis a 37 °C según correspondiese y pasado ese tiempo, las muestras fueron centrifugadas 5 min a 3550 g colectándose el sobrenadante que fue conservado a -20 °C hasta su análisis por HPLC.

2.1.2 Incubación de bacterias sonicadas con AC

Se partió de un cultivo de 24 h en anaerobiosis de las cepas en las mismas condiciones detalladas en el inciso 2.1.1. Luego, los cultivos se dividieron en partes iguales; el tubo A se sonicó 5 min y el tubo B 8 min (equipo VCX 750 Ultrasonic Processor- Sonic & Materials Inc, Newtown, USA). En ambos casos la amplitud fue del 70 % (siendo 750 watt la máxima amplitud), los pulsos de 30 seg (ON/OFF) y se mantuvieron las muestras en frío, a 0 °C. Una vez finalizada la sonicación, se agregaron a los tubos AC 0,16 mg/ml + cys (0,05 %p/v) y se incubaron 1 h a 37 °C en anaerobiosis. Luego, se centrifugaron las muestras 5 min a 3550 g y se separó el sobrenadante que se conservó a -20°C hasta el análisis por HPLC.

2.1.3 Incubación de AC con bacterias sonicadas en presencia de inhibidor de proteasa

Se partió de un cultivo de 24 h en anaerobiosis de las cepas en las mismas condiciones detalladas en el inciso 2.1.1. Luego se realizaron dos lavados con PBS y se suspendió el pellet en MRS para medir la DO (600 nm) de las muestras. Se ajustaron todas las cepas a la DO más baja. Se dividieron los cultivos en 2; al tubo A se le agregó inhibidor de proteasa (preparado 7X según indicaciones detalladas a continuación) y al tubo B no se le realizó ningún agregado

Las muestras fueron sonicadas 10 min a 40 % de amplitud (siendo 400 watt la máxima amplitud) sin pulsos, en frío, a 0 °C (equipo OMNI Sonic Ruptor 400 (Omni International, Georgia, USA)). Una vez finalizada la sonicación se agregaron a los tubos AC 0,16 mg/ml + cys (0,05 %p/v) y se incubaron 1 h a 37 °C en anaerobiosis. Luego, se centrifugaron las

muestras 5 min. a 3550 g y se separó el sobrenadante que se conservó a -20 °C hasta el análisis por HPLC.

2.1.3.1 Preparación del stock de inhibidor de proteasa.

Se utilizaron comprimidos "C0omplete Tablets, Mini, EDTA-free, EASYpack" de Roche. Según recomendación del fabricante, se preparó un stock 7x disolviendo 1 comprimido en 1,5 ml de H_2O destilada.

Esta solución es estable 1-2 semanas a 8 $^{\circ}$ C o hasta 12 semanas si se almacena entre -15 y -25 $^{\circ}$ C.

2.2 Disolución de AC en medios biorrelevantes

2.2.1 Preparación del medio de disolución

Para esta primera instancia se siguió el protocolo original propuesto por Dressman (1998) que se detalla en la tabla 2.1, con dos modificaciones: se utilizó lecitina de soja granulada (Macrosalud, Argentina) y bilis de buey completa (Britania, Laboratorios Britania S.A, Buenos Aires, Argentina) en vez de taurocolato de sodio (Tabla 2.2).

Se mezclaron todos los componentes y se llevaron a pH con NaOH 10 M. Finalmente, la solución se filtró a través de membrana de $0,45~\mu m$.

Tabla 2.2 Composición del medio Fessif adaptado.

Componente	Cantidad
Ácido Acético	8.2 ml
Lecitina	3.08 gr
KCI	14 gr
Bilis de buey	8.7 gr
Agua destilada	1000 ml
рН	5
H₂0 destilada	11

Cabe destacar que este medio también fue formulado sin lecitina, manteniendo el resto de los componentes iguales.

2.2.2 Preparación de los medios modificados

Partiendo de un cultivo de 24 h de las cepas en anaerobiosis, se inocularon 20 ml de suspensión bacteriana en 2 l de MRS suplementado con cys (5% p/v). Se incubaron 24 h en anaerobiosis utilizando kits y bolsa de autoclave con clips cerradores en estufa a 37 °C. Luego los cultivos fueron centrifugados por 10 minutos a 10000 g (centrífuga Beckman Coulter Inc., EE.UU, ROTOR JA-10).

El pellet obtenido fue suspendido en el medio Fessif previamente preparado y se volvió a incubar en las mismas condiciones. Luego de 24 h se repitió el proceso de centrifugación recuperando el sobrenadante, el cual fue filtrado a través de filtros de membrana de 0,45 µm de diámetro de poro.

Se conservó el medio obtenido biomodificado por los microorganismos para la posterior realización de los ensayos de disolución.

2.2.3 Ensayos en vasos individuales

La experiencia en una primera instancia fue abordada utilizando vasos de precipitado de igual volumen, así como buzos magnéticos de igual tamaño y una placa agitadora-calefactora. Si bien no hubo modificaciones en la preparación del medio o en la incubación con las cepas, no se realizaron los pasos de filtrado en el medio modificado.

Esto fue realizado con el objetivo de estudiar preliminarmente el perfil de disolución de la droga y así lograr ajustar las condiciones necesarias para obtener mejores resultados en el equipo disolutor.

Para ello, se utilizó una placa agitadora calefactora DLAB MS-M-510 (DLAB Scientific Co. LTD., Beijing, China) que cuenta con 10 posiciones, a 37 °C a una velocidad de agitación de 90 rpm.

En cada vaso, se colocaron 200 ml de medio y un comprimido de AC 4 mg marca SINTROM (Laboratorio Novartis, Argentina). Se utilizaron dos vasos por condición y se tomaron muestras a diferentes tiempos: 30 min, 1 h, 2 h, 4 h y 6 h. Estas muestras fueron centrifugadas, filtradas con membranas de 0.45 μ m de diámetro de poro y almacenadas a -20 °C hasta el momento del análisis por HPLC.

2.2.4 Ensayo de disolución en equipo disolutor

Para este ensayo, se utilizó un equipo Hanson Research Vision Classic 6- USP tipo 2 (California, EEUU) que cuenta con 6 vasos. Se cargaron 400 ml de medio Fessif filtrado, y

Capítulo 2

dos comprimidos de AC 4 mg marca SINTROM para mantener la relación previamente

establecida en el punto 2.2.3. Las condiciones de trabajo se establecieron en 37 °C y 50

rpm. En este caso, se emplearon 3 vasos para cada condición.

Se tomaron muestras a los mismos tiempos que los establecidos en el ensayo detallado en

el punto 2.7 y se conservaron de igual manera hasta su análisis por HPLC.

2.3 Evaluación de actividad enzimática bilis hidrolasa sobre taurocolato de

sodio

Se estudió la capacidad de las cepas de deconjugar el taurocolato de sodio, actividad

enzimática conocida como bilis hidrolasa.

Para esto, se partió de un cultivo de 24 h en anaerobiosis de las cepas en las mismas

condiciones que las detalladas en el punto 2.1. Luego se prepararon placas de agar MRS

de 10 ml suplementadas con 0.5 % p/v ácido taurocólico + 0.035 %p/v CaCl₂. Se realizó

una siembra por estrías y las placas fueron incubadas 48 h a 37 °C en anaerobiosis.

Luego de la incubación se procedió a la lectura de los resultados. Si la cepa es capaz de

deconjugar taurocolato se observa un halo opaco de precipitación alrededor de las

colonias dada la insolubilidad del ácido no conjugado.

3. Análisis

Las muestras fueron analizadas por HPLC en las mismas condiciones detalladas en el

capítulo 1. Los datos correspondientes a los experimentos de remoción del medio de cultivo, lavado con PBS y sonicación de las cepas fueron analizados utilizando el software

de Microsoft Excel 2010 realizando la prueba pareada t de Student con p < 0,05.

Con respecto a los ensayos de disolución, luego de la inspección visual de las curvas

obtenidas (disolución vs tiempo) se realizó un ajuste utilizando la siguiente ecuación:

Y = Ymax*t/(K + t)

Donde:

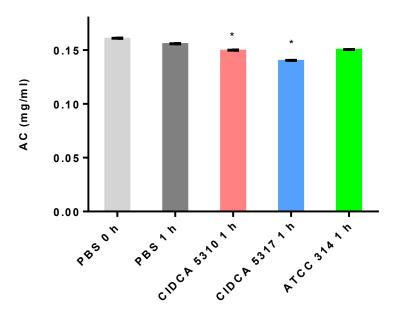
Y: Porcentaje de disolución

Ymáx: Porcentaje de disolución máximo

t: Tiempo (h)

81

K: Constante. En este caso representaría el tiempo necesario para alcanzar la mitad del porcentaje de disolución máximo.


Las curvas fueron graficadas utilizando GraphPad Prism 8 (GraphPad Software Inc., California, EEUU). El análisis estadístico se realizó analizando punto a punto mediante la prueba t de Student (p< 0,05), siendo estos los valores que se utilizan para la discusión.

4. Resultados

Ensayos de actividad enzimática sobre el acenocumarol

Como una primera aproximación para ahondar en el estudio de los efectos de la actividad enzimática bacteriana sobre el AC, se realizaron ensayos de incubación con la droga a 1 h utilizando las bacterias lavadas con PBS. Transcurrido este tiempo, se evaluó la concentración de AC mediante HPLC.

Al analizar los resultados obtenidos se observó que, luego del lavado con PBS, solamente las cepas CIDCA 5310 y CIDCA 5317 produjeron una disminución de la concentración AC con respecto a los controles (p < 0,05), mientras la concentración no se modificaba para la cepa ATCC 314 (figura 2.3).

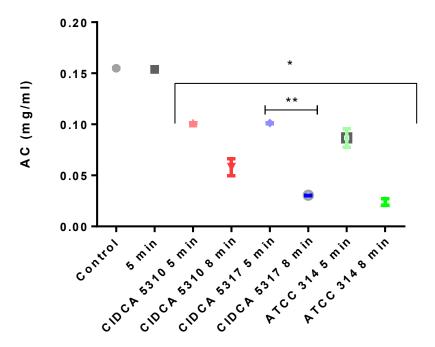


Figura 2.3. Concentración de AC (mg/ml) luego de la incubación durante 1 h con las cepas lavadas con PBS. * Indica p < 0,05 con respecto al grupo PBS+AC 1 h. Se muestra un resultado representativo de tres ensayos independientes. Las barras indican la desviación estándar de tres medidas.

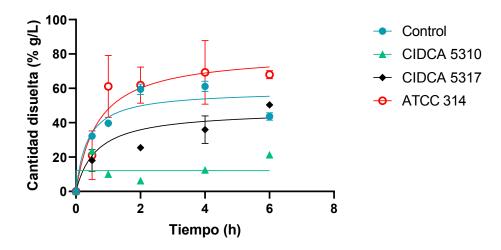
Continuando en esta misma línea de estudio, se decidió probar si las modificaciones observadas sobre la concentración de AC eran llevadas a cabo por la dotación enzimática intracelular bacteriana, por lo que se procedió a la lisis celular para liberarlas. Este proceso se llevó a cabo mediante sonicación en frío.

En este sentido se ensayaron dos condiciones de lisis: con y sin agregado de un inhibidor de proteasas. Este componente preserva a las proteínas liberadas de ser sometidas a degradación por las mismas proteasas celulares.

En una primera instancia al evaluar la obtención de la dotación enzimática sin el agregado de inhibidor de proteasa se obtuvieron los resultados que se observan en la figura 2.4.

Figura 2.4. Concentración de AC (mg/ml) luego de 1 h de incubación con las cepas sonicadas durante 5 u 8 minutos. * Indica p < 0.05 con respecto al control. ** Indica p < 0,05 entre los diferentes tiempos de sonicación evaluados para una misma cepa. Se muestra un resultado representativo de tres ensayos independientes. Las barras indican la desviación estándar de tres medidas.

De esta figura se puede concluir que la sonicación de las bacterias genera una disminución de la concentración de AC con respecto al control sometido al mismo tratamiento, luego de un tiempo corto de incubación (1 h). Más aún, para todas las cepas en estudio, el aumento del tiempo de sonicación se corresponde con una disminución de la concentración de AC, si bien sólo es significativamente diferente para la cepa CIDCA 5317 (p < 0.05) (Figura 2.4).


Vistos estos resultados, se procedió al segundo abordaje de estos ensayos, donde previo a la lisis por sonicación de las bacterias, se agregó al medio un inhibidor de proteasas para prevenir posibles efectos de degradación por parte de enzimas liberadas durante la sonicación.

En este caso, luego de la incubación de estas muestras con AC a tiempos cortos, no se observaron picos cuantificables por HPLC para la droga. En comparación con los estudios anteriores de sonicación, se puede concluir que el agregado previo de inhibidor de proteasa potencia al efecto observado sobre la molécula de AC.

Ensayos de disolución de AC en medios biorelevantes

Con relación a los ensayos de disolución, y como se detalló en materiales y métodos de este capítulo, se utilizaron dos aproximaciones.

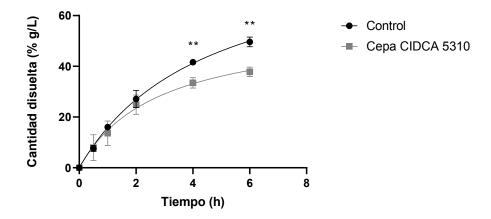

La primera consistió en evaluar la disolución de comprimidos de AC en medio Fessif biomodificado por las bacterias utilizando vasos de precipitado con agitador magnético. Los ensayos se realizaron con medio Fessif libre de células bacterianas. Realizando el análisis de función previamente establecido se ajustaron las curvas obtenidas al modelo planteado, generando las curvas de disolución que se muestran en la figura 2.5.

Figura 2.5. Disolución de comprimidos de AC (expresada como %) en medio Fessif biomodificado libre de células, utilizando el sistema de vasos individuales. Las barras de las respectivas desviaciones estándar no se evidencian cuando son menores que el símbolo. Se muestra un resultado representativo de tres ensayos independientes.

Como puede observarse, la cepa CIDCA 5310 muestra un efecto sobre la disolución de los comprimidos de acenocumarol mucho mayor que el resto de las cepas evaluadas: a lo largo de los tiempos ensayados sólo se alcanza un máximo de 21,3 % \pm 1.1 de droga disuelta, en comparación con el control que alcanza una la disolución máxima a las 2 h de 61,1 % \pm 3.0. Tanto para la cepa CIDCA 5317 como para la ATCC 314 no se obtuvieron valores de disolución significativamente diferentes del control, como se puede observar en la figura 2.5.

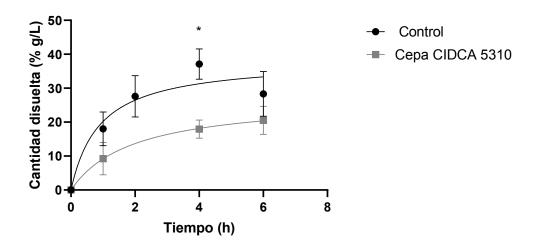
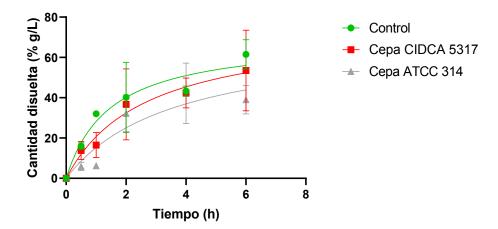

Avanzando con los ensayos realizados en el equipo disolutor de paletas, en el caso del medio Fessif biomodificado por la cepa CIDCA 5310, se obtuvieron las curvas de disolución de AC que se ilustran en la figura 2.6.

Figura 2.6. Disolución de comprimidos de AC (expresada como %) en medio Fessif control y medio Fessif biomodificado por la cepa CIDCA 5310 y filtrado, utilizando el equipo disolutor. ** Indica p < 0.05. Se muestra un resultado representativo de tres ensayos independientes. Las barras indican la desviación estándar de tres medidas independientes.

De esta figura se puede remarcar que se observan diferencias significativas entre ambos perfiles de disolución a partir de las 4 h, siendo menor el porcentaje de disolución observado para el medio biomodificado. En este caso los valores máximos alcanzados fueron de 49.6 ± 1.9 para el control y 37.8 ± 1.8 % para el medio biomodificado. Estos resultados están en concordancia con lo observado previamente en los ensayos en vasos de precipitado con agitador magnético (Figura 2.5).

Una vez realizado este ensayo, antes de incluir al resto de las cepas, se decidió evaluar el efecto de los componentes del medio. Para esto se estudió la disolución de los comprimidos de AC en un medio Fessif sin la presencia de la lecitina de soja, componente que, junto a la bilis, forma micelas mixtas que permiten la solubilización de componentes lipofílicos. Las curvas obtenidas se observan en la figura 2.7.


Figura 2.7. Disolución de comprimidos de AC (expresada como %) en medio Fessif **sin lecitina** control y medio Fessif **sin lecitina** biomodificado por la cepa CIDCA 5310 y filtrado, utilizando el equipo disolutor. * indica p<0.05. El grafico muestra un resultado representativo de tres ensayos independientes. Las barras indican la desviación estándar de tres medidas independientes.

Tanto para el medio Fessif sin biomodificar (condición control) y Fessif biomodificado por la cepa CIDCA 5310, los valores de disolución en ausencia lecitina fueron menores (Figura 2.7) que los obtenidos con el medio completo (Figura 2.6). Los valores máximos alcanzados fueron $28,32 \pm 6,60 \%$ para el medio control vs $20,53 \pm 4,14\%$ para el medio biomodificado por la cepa CIDCA 5310 (Figura 2.7).

Sin embargo, las diferencias observadas entre el control y la cepa CIDCA 5310 se mantienen aunque se obtuvieron valores más bajos de disolución.

En vista de los resultados obtenidos, se decidió optar por la utilización del medio completo para el resto de los ensayos ya que otorgaba un margen mayor para evaluar posibles modificaciones por parte de las bacterias.

Entonces, teniendo esto en cuenta, se procedió a realizar el mismo ensayo en el equipo disolutor con el medio completo, y con las cepas restantes: CIDCA 5317 y ATCC 314, para evaluar si en este sistema se apreciaban diferencias con respecto a los ensayos en vasos (Figura 2.8).

Figura 2.8. Disolución de los comprimidos de AC (expresada como %) en medios Fessif control y medio Fessif biomodificado por la cepa CIDCA 5317 o ATCC 314 y filtrado, utilizando el equipo disolutor. Se muestra un resultado representativo de tres ensayos independientes. Las barras indican la desviación estándar de tres medidas independientes.

La figura 2.8 muestra que, también utilizando el equipo disolutor, no se observaron diferencias con ninguna de las dos cepas con respecto a los valores de disolución a los distintos tiempos, obteniéndose el mismo resultado que para el ensayo en vasos individuales mostrado en la figura 2.5.

Evaluación de actividad bilis hidrolasa sobre taurocolato de sodio

En búsqueda de enzimas bacterianas con capacidad de modificar al medio, se realizó una prueba que nos permitió identificar entre nuestras cepas cuales poseían capacidad de deconjugar taurocolato debido a actividad bilis hidrolasa (BSH). La fórmula general de la reacción catalizada por esta enzima es:

Tabla 2.3 Evaluación de la actividad BSH en las cepas CIDCA 5310, CIDCA 5317 y ATCC 314 en placas de agar MRS conteniendo ácido taurocólico y CaCl₂.

Cepas bacterianas	CIDCA 5310	CIDCA 5317	ATCC 314	
Actividad Bilis Hidrolasa	-	-	+	

Como se observa en la tabla 2.3, utilizando este ensayo, ambas cepas de bifidobacterias resultaron negativas para la actividad enzimática en estudio mientras que la cepa ATCC 314, resultó positiva, poniéndose esto en evidencia por la aparición de un halo opaco blanquecino de precipitación alrededor de la zona de crecimiento de los microorganismos.

5. Discusión

Las bacterias presentes en el intestino tienen la capacidad de interactuar con compuestos luminales (Noriega *et al.* 2006; Sousa *et al.* 2008; Zmora, Suez and Elinav 2019; Weersma, Zhernakova and Fu 2020). Entre ellos se encuentran los fármacos administrados por vía oral. En esta interacción la carga enzimática bacteriana tiene la capacidad de modificar a las moléculas de fármaco contribuyendo a su metabolización además de modificar otros componentes del medio intestinal. En este sentido, para fármacos cuya absorción se ve gobernada por la disolución tal como el acenocumarol, modificaciones de las bacterias sobre el medio que impacten en este proceso, agregarían un nuevo elemento a tener en cuenta para comprender los posibles efectos.

Comenzando con los resultados obtenidos para los ensayos con bacterias lavadas e incubación a tiempos cortos con AC, se puede ver para ambas cepas de bifidobacterias que la concentración de AC disminuye luego de la incubación. Esto permite plantear que la biomodificación que sufre la droga por parte de los microorganismos, no se explica solamente por una liberación de moléculas al medio de cultivo durante el crecimiento, ni con una interacción de estas moléculas con componentes propios del medio, sino que se podría deber a la actividad de enzimas intracelulares, así como a enzimas asociadas a las envolturas celulares. Refuerzan esta hipótesis los resultados obtenidos luego de sonicar a los microorganismos e incubarlos con AC, donde hay una disminución de la concentración para todas las cepas en estudio, pudiendo esto deberse a la liberación de enzimas bacterianas intracelulares al producirse la ruptura celular como también a una mayor disponibilidad de enzimas asociadas a la envoltura para interactuar con sus sustratos. Más aún y en consonancia con lo planteado, el aumento del tiempo de sonicación, correspondiéndose con una ruptura de una mayor cantidad de células y por ende una mayor cantidad de enzimas liberadas al medio, provoca una disminución aún mayor de la concentración de la droga. Para finalizar, sustenta estos supuestos el ensayo donde al incluirse un inhibidor de proteasas en el medio con el fin de proteger las proteínas liberadas luego de la lisis, la concentración de AC post incubación no fue detectable por HPLC para ninguna de las muestras estudiadas. Varias enzimas bacterianas con localización intracelular han sido descriptas y estudiadas en relación a su capacidad de modificar moléculas de fármacos, como reductasas e hidrolasas, capaces de alterar la concentración plasmática de los mismos, pudiendo generar dentro de las consecuencias, efectos adversos (Zimmermann et al. 2019). En el estudio presentado por Zimmermann y colaboradores se describen cepas de bifidobacterias y lactobacilos capaces de producir estas modificaciones, siendo una de las cepas de bifidobacterias, B. ruminantium, capaz de actuar sobre 50 compuestos, de los 176 estudiados (Zimmermann et al. 2019). También varios investigadores han descripto enzimas asociadas a la envoltura celular bacteriana con capacidad hidrolítica, como por ejemplo proteasas. La función de dichas enzimas varía según el género bacteriano ya que puede estar involucrada en procesos de infección debidos a patógenos y de obtención de energía en microorganismos como los lactobacilos (Kojic *et al.* 1991; Heywood and Lamont 2020; McKenna *et al.* 2022).

Con respecto a lo observado para los ensayos de disolución en medios biorelevantes y biomodificados por las bacterias, en una primera instancia haciendo alusión a los ensayos realizados en el equipo disolutor, se concluyó que la remoción de lecitina del medio impacta profundamente en la capacidad de disolución del mismo, observándose una disminución marcada para los valores máximos obtenidos tanto para el medio control como el medio biomodificado con la cepa CIDCA 5310. La lecitina es uno de los tres lípidos mayoritarios de la bilis que en nuestro organismo forma micelas mixtas para transportar y emulsionar las grasas (Castro *et al.* 2013). Nuestros resultados son compatibles con esta función para compuestos altamente lipofílicos como el acenocumarol. Para poder apreciar mejor entonces, los posibles efectos de las bacterias sobre la disolución los ensayos se continuaron con el medio Fessif completo.

Avanzando con lo observado en el caso de las cepas, se puede concluir que hay un efecto de las bacterias en la modificación del medio biorelevante que impacta en la disolución de los comprimidos y que ese efecto sobre el medio es dependiente de la cepa, ya que se observa solamente para la cepa CIDCA 5310.

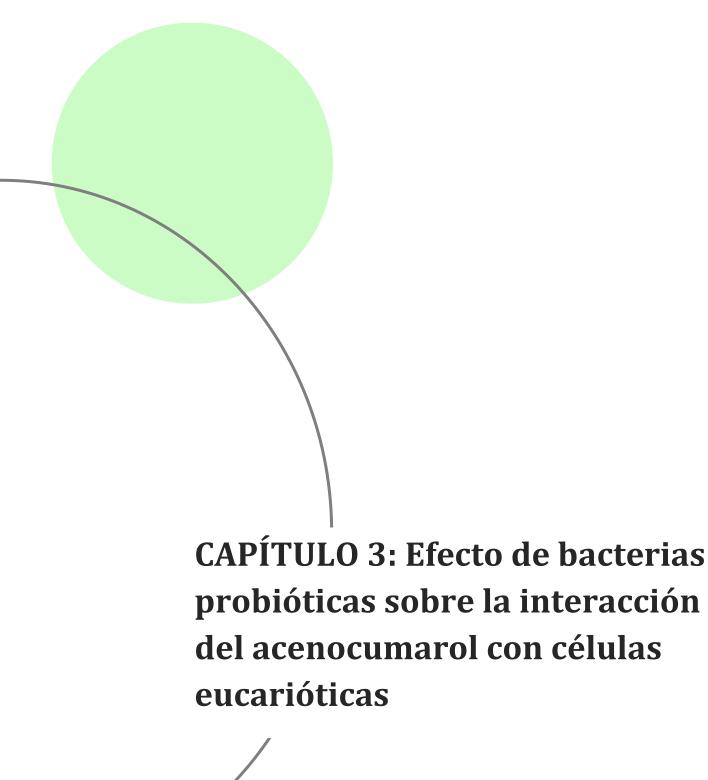
Si analizamos los componentes del medio Fessif, la bilis podría ser uno de los blancos de modificación. La bilis, a su vez, es muy compleja en su composición, conteniendo colesterol, mucina, ácidos grasos y ácidos biliares, entre otros. En este sentido, varios estudios han reportado la actividad de diversas enzimas bacterianas sobre los ácidos biliares que surge principalmente como un mecanismo de supervivencia a la actividad antimicrobiana que poseen estos compuestos (Kim et al. 2004; Kumar et al. 2006). Estas enzimas son capaces de deconjugar (bilis hidrolasa), dehidroxilar y epimerizar (previa dehidrogenación) a los ácidos biliares generando una gran variedad de productos que integran el pool de ácidos biliares presentes en nuestro organismo, que a su vez exhiben diferente grado de hidrofobicidad (Begley, Gahan and Hill 2005; Ridlon, Kang and Hylemon 2006). Por otra parte, los genes codificantes para estas enzimas parecen estar ampliamente distribuidos en los diferentes géneros bacterianos. En cambio, la actividad 7α-dehidroxilasa parecería estar limitada a algunas especies de Clostridioides, si bien la literatura sugiere que más géneros bacterianos podrían ser portadores de este gen (Begley, Gahan and Hill 2005; Wise and Cummings 2023). Según los resultados obtenidos de la actividad bilis hidrolasa sobre taurocolato para las cepas CIDCA 5310, CIDCA 5317 y ATCC 314, se observa que solamente la cepa de lactobacilos resultó positiva para esta actividad. De todas maneras resulta importante mencionar que, estudios aún no publicados de nuestro grupo, han demostrado la capacidad tanto de la cepa CIDCA 5310 como CIDCA 5317 de deconjugar al taurocolato en cultivo en medio BHI y además, la cepa CIDCA 5317 fue capaz de modificar al ácido ursodesoxicólico (UDCA). Estos resultados fueron obtenidos mediante espectrometría de masas y, más aún, se encuentran en concordancia con la bibliografía, dado que la enzima BSH se ha aislado y caracterizado en cepas de *Bifidobacterium* (Kim *et al.* 2004; Kim, Brochet and Lee 2005; Kumar *et al.* 2006). En estos trabajos, sin embargo, la actividad enzimática es evaluada por otra metodología, ya que utilizan el ensayo de ninhidrina que detecta la liberación de aminoácidos (Kim *et al.* 2004; Kim, Brochet and Lee 2005; Kumar *et al.* 2006). En este sentido entonces, la evaluación de esta actividad enzimática por la técnica planteada en este capítulo presenta ciertas limitaciones, lo que permitiría explicar las diferencias con otras metodologías. Principalmente debe tenerse en cuenta la baja sensibilidad del método en placa que se basa en la precipitación del ácido cólico para lo cual debe superarse un cierto umbral.

Como ya se hizo mención previamente, la absorción de las drogas de clase II está limitada por su solubilización y es aquí donde las micelas formadas por las sales biliares cumplen un rol clave como detergentes. Por ende, es posible pensar que una modificación en la composición de estas micelas podría impactar en la liberación del fármaco de su forma farmacéutica. En este sentido se encuentran en la bibliografía científica estudios que analizan la capacidad de solubilización de medios biorelevantes (Fassif y Fessif) modificados con ácidos biliares secundarios (deconjugados y dehidroxilados) sobre drogas con baja solubilidad en agua (Enright et al. 2017). Sorprendentemente, se encontró que mientras para algunas drogas la disolución en medios biorelevantes aumentaba con la presencia de ácidos biliares secundarios como para la progesterona, esto no era extrapolable para todas las drogas en estudio y más aún, dependía también de la concentración de ácidos biliares presentes (Enright et al. 2017).

Considerando nuestros resultados, se podría plantear que la disminución de la disolución del AC en medio Fessif biomodificado por la cepa CIDCA 5310 podría ser compatible con una modificación de las sales biliares presentes en el medio por el metabolismo bacteriano, lo que generaría en última instancia una menor capacidad de solubilización del mismo. No podría descartarse que este efecto este asociado a la actividad bilis hidrolasa de la cepa CIDCA 5310, ya que como se mencionó anteriormente, la técnica utilizada en el screening de esta actividad presenta sus limitaciones y estudios posteriores de nuestro grupo demostraron la capacidad de esta cepa de deconjugar taurocolato. Si bien tanto la cepa CIDCA 5317 como ATCC 314 no modificaron la capacidad de disolución del medio, no se podría descartar que modifiquen a las sales biliares, ya que como se ha mencionado la cepa CIDCA 5317 tiene capacidad de deconjugar el taurocolato. Tampoco podría

descartarse el efecto de otras enzimas sobre otros componentes de la bilis. El efecto observado, entonces, parecería ser dependiente de la cepa, lo cual es lógico pensar ya que no todas las cepas tendrán la misma carga enzimática. Esto se retomará más adelante en el capítulo 4, donde se analiza el proteoma de las cepas en presencia de AC.

Todas las cepas en estudio presentarían enzimas intracelulares o asociadas a la envoltura celular (exocelulares), capaces de modificar la molécula de AC evidenciándose esto por una disminución de la concentración de la droga y que esta modificación es mayor mientras mayor sea la cantidad de enzimas liberadas al medio y enfrentadas con esta molécula. Esto demuestra que existe una interacción directa entre las moléculas de anticoagulantes y los microorganismos.


Por otro lado, la capacidad de disolución del medio biorelevante Fessif puede verse modificada por la actividad metabólica bacteriana. Sin embargo, nuestros estudios sugieren que este efecto es dependiente de la cepa y que, en el caso de la cepa CIDCA 5310, esta modificación del medio actuaría en detrimento de la disolución del AC. Nuestros hallazgos resultan novedosos ya que es la primera vez que se evalúan comprimidos de AC en medio Fessif y medio Fessif biomodificado por bacterias probióticas, lo que nos da un acercamiento a los acciones de estas cepas sobre medios de simulación intestinal.

Como conclusión de este capítulo, podemos resaltar la importancia de la realización de los ensayos de disolución en medios biorrelevantes y biomodificados cuando se desea evaluar lo que sucede en la toma conjunta de medicamentos con suplementos alimenticios, en este caso en particular, probióticos. Entonces, podemos concluir que una vez administrado el comprimido de AC y luego de su llegada al intestino nuestros resultados indican que podrían darse dos eventos: modificación directa de la molécula por acción de enzimas bacterianas o alteración de la disolución del comprimido por modificación de componentes del medio intestinal, impactando en la absorción del mismo.

6. Bibliografía

- Baena Y, Ponce D'león LF. Importancia y Fundamentación Del Sistema de Clasificación Biofarmacéutico, Como Base de La Exención de Estudios de Biodisponibilidad y Bioequivalencia in Vivo., Rev Colombiana de C Químico Farmacéuticas 2008; 31:1.2008.
- Begley M, Gahan CGM, Hill C. The interaction between bacteria and bile. *FEMS Microbiol Rev* 2005;**29**:625–51.
- Castro I, Martínez M, Afiliación A, México D. Transportadores de lípidos biliares: una revisión actualizada. *Rev GEN (Gastroenterología Nac* 2013;**67**:49–57.
- Clarysse S, Brouwers J, Tack J, Annaert P, Augustijns P. Intestinal drug solubility estimation based on simulated intestinal fluids: Comparison with solubility in human intestinal fluids. *Eur J Pharm Sci* 2011;**43**:260–9.
- Dressman JB, Amidon GL, Reppas C, Shah V. Dissolution Testing as a Prognostic Tool for Oral Drug Absorption. Inmediate Release Dosage Form. *Pharm Res* 1998;**15**.
- Enright EF, Joyce SA, Gahan CGM, Griffin BT. Impact of gut microbiota-mediated bile acid metabolism on the solubilization capacity of bile salt micelles and drug solubility. *Mol Pharm* 2017;**14**:1251–63.
- Food and Drug Administration. Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System., 2017.
- Galia E, Nicolaides E, Hörter D, Löbenberg R, Reppas C, Dressman JB. Evaluation of various dissolution media for predicting In vivo performance of class I and II drugs. *Pharm Res* 1998;**15**:698–705.
- Goodman L, Gilman A. Goodman and Gilman's The Pharmacological basis of Therapeutics. *McGraw Hill Med* 2018:2047.
- Heywood A, Lamont IL. Cell envelope proteases and peptidases of Pseudomonas aeruginosa: Multiple roles, multiple mechanisms. *FEMS Microbiol Rev* 2020;**44**:857–73.
- Jantratid E, Janssen N, Reppas C, Dressman JB. Dissolution media simulating conditions in the proximal human gastrointestinal tract: An update. *Pharm Res* 2008;**25**:1663–76.
- Kim GB, Brochet M, Lee BH. Cloning and characterization of a bile salt hydrolase (bsh) from Bifidobacterium adolescentis. *Biotechnol Lett* 2005;**27**:817–22.
- Kim GB, Miyamoto CM, Meighen EA, Lee BH. Cloning and characterization of the bile salt hydrolase genes (bsh) from Bifidobacterium bifidum strains. *Appl Environ Microbiol* 2004;**70**:5603–12.
- Kojic M, Fira D, Banina A, Topisirovic L. Characterization of the cell wall-bound proteinase of Lactobacillus casei HN14. *Appl Environ Microbiol* 1991;**57**:1753–7.
- Kumar RS, Brannigan JA, Prabhune AA, Pundle A V., Dodson GG, Dodson EJ, Suresh CG. Structural

- and functional analysis of a conjugated bile salt hydrolase from Bifidobacterium longum reveals an evolutionary relationship with penicillin V acylase. *J Biol Chem* 2006;**281**:32516–25.
- McKenna S, Huse KK, Giblin S, Pearson M, Shibar MSM Al, Sriskandan S, Matthews S, Pease JE. The Role of Streptococcal Cell-Envelope Proteases in Bacterial Evasion of the Innate Immune System. *J Innate Immun* 2022;**14**:69–88.
- Noriega L, Cuevas I, Margolles A, de los Reyes-Gavilán CG. Deconjugation and bile salts hydrolase activity by Bifidobacterium strains with acquired resistance to bile. *Int Dairy J* 2006;**16**:850–5.
- Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. *J Lipid Res* 2006;**47**:241–59.
- Samineni R, Chimakurthy J, Konidala S. Emerging Role of Biopharmaceutical Classification and Biopharmaceutical Drug Disposition System in Dosage form Development: A Systematic Review. *Turkish J Pharm Sci* 2022;**19**:706–13.
- Sousa T, Paterson R, Moore V, Carlsson A, Abrahamsson B, Basit AW. The gastrointestinal microbiota as a site for the biotransformation of drugs. *Int J Pharm* 2008;**363**:1–25.
- Talevi A. Procesos biofarmacéuticos. Procesos Biofarm 2020, DOI: 10.35537/10915/51907.
- Tsume Y, Mudie DM, Langguth P, Amidon GE, Amidon GL. The Biopharmaceutics Classification System: Subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. *Eur J Pharm Sci* 2014;**57**:152–63.
- United States Pharmacopeia. DISSOLUTION. United States Pharmacopeial Conv 2011;1.
- Vertzoni M, Fotaki N, Nicolaides E, Reppas C, Kostewicz E, Stippler E, Leuner C, Dressman J. Dissolution media simulating the intralumenal composition of the small intestine: physiological issues and practical aspects. *J Pharm Pharmacol* 2004;**56**:453–62.
- Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut microbiome. *Gut* 2020;**69**:1510–9.
- Wise JL, Cummings BP. The 7- α -dehydroxylation pathway: An integral component of gut bacterial bile acid metabolism and potential therapeutic target. *Front Microbiol* 2023;**13**, DOI: 10.3389/fmicb.2022.1093420.
- Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. *Nature* 2019;**570**:462–7.
- Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. *Nat Rev Gastroenterol Hepatol* 2019;**16**:35–56.

1- Introducción

La absorción, distribución y eliminación de fármacos está estrechamente ligada al estudio de transportadores. Las moléculas pueden utilizar transportes activos o pasivos. Dentro de los mecanismos pasivos podemos encontrar al transporte transcelular o paracelular, mientras que los principales transportadores activos se concentran en dos superfamilias: ABC y SLC (ATP Binding Cassette y SoLute Carrier, respectivamente, según sus siglas en inglés) (Goodman and Gilman 2018). Dentro de la familia ABC, uno de los transportadores más conocidos es la glucoproteína P (P-gp). Los transportadores pueden intervenir en la farmacocinética o en la farmacodinamia de los medicamentos, distribuyéndose a lo largo de los epitelios intestinal, renal y hepático. Mientras que los transportadores ABC trabajan expulsando sustancias de las células, por ejemplo, hacia el torrente sanguíneo, los pertenecientes a la familia SLC funcionan captando moléculas hacia el interior celular. Utilizan primariamente mecanismos activos secundarios, valiéndose de la energía contenida en el gradiente electroquímico de una sustancia para mover otra. Dentro de los 300 SLC descriptos, varios se han relacionado con el transporte de fármacos, entre ellos podemos mencionar: transportadores de cationes orgánicos (OCT, por sus siglas en inglés Organic Cation Transporter), transportadores de aniones orgánicos (OAT, por sus siglas en inglés Organic Anion Transporter), el transportador de péptidos (PEPTs) y las proteínas de extrusión de multidrogas y toxinas (MATE por sus siglas en inglés Multidrug and Toxin Extrusion) (Frans G.M. Russel 2010; Dewald and Becker 2014; Liu and Guoyu 2019). Más aún, Bi y colaboradores demostraron que la warfarina es un sustrato del transportador OAT2 localizado en los hepatocitos. Además describen que el polimorfismo del gen codificante de este transportador sumado al polimorfismo del gen cyp2c9 encargado del metabolismo hepático de la warfarina, podrían contribuir a la gran variabilidad interindividual en la farmacocinética de esta droga (Bi et al. 2018). En relación al acenocumarol, es conocido que esta molécula es un sustrato de los transportadores de eflujo tipo ABC que incluyen a la glicoproteína P (P-gp), la proteína de resistencia al cáncer de mama en humanos (BCRP) y a los transportadores asociados a resistencia a multidrogas (MRPs) (Espana, Couturier and Prouillac 2017). Estos transportadores son cruciales ya que pueden limitar la absorción de fármacos a nivel intestinal y se encuentran expresados en las células epiteliales como el caso de la línea Caco-2 (Espana, Couturier and Prouillac 2017).

Los procesos de metabolización, junto con los de excreción, se consideran los procesos encargados de la eliminación de las drogas. El metabolismo puede ser oxidativo o reductor, asociado a CYP450 y carbonilo reductasas, respectivamente (Espana, Couturier and Prouillac 2017). Para el AC se encuentra descripto que su metabolismo es principalmente hepático, llevado a cabo por enzimas pertenecientes a la familia del

citocromo P450, específicamente por las isoformas 2c9, 1a2 y 2c19 (Tassies *et al.* 2002; Ufer 2005) como ya se ha mencionado previamente en esta tesis.

La línea celular Caco-2, proveniente de un paciente con adenocarcinoma de colon (Fogh and Orfeo 1977) es una línea utilizada hace varias décadas en estudios in vitro como modelo de epitelio intestinal. Estas células tienen la ventaja de diferenciarse espontáneamente, formando una monocapa que exhibe propiedades muy similares a la de los enterocitos maduros (Sambuy et al. 2005). Estas propiedades, que son alcanzadas luego de la confluencia de la monocapa, están relacionadas con la presencia de uniones estrechas funcionales, de ribete en cepillo y sus enzimas como la fosfatasa alcalina, aminopeptidasa y sacarasa-isomaltasa, además relacionadas al metabolismo de drogas como las pertenecientes a la familia del citocromo P450 (Rousset 1986; Chantret et al. 1994; Caro et al. 1995). Cabe destacar que estos enterocitos se asemejan más a los fetales que a los que se encuentran en la vida adulta de un humano, que a su vez se asemejan más a las células presentes en el intestino delgado adulto (Sambuy et al. 2005). Estas células, además, gracias a sus uniones estrechas presentan una alta resistencia transepitelial (TEER según sus siglas en inglés TransEpithelial Electrical Resistance) (Volpe 2011). La medida del TEER se utiliza ampliamente ya que es no invasiva y permite seguir la integridad de la monocapa durante el transcurso de los experimentos (Srinivasan et al. 2015).

Como mencionamos, estas células tienen diversas aplicaciones en el ámbito de la investigación y también en desarrollo de nuevos fármacos para modelar su permeabilidad intestinal. Se utilizan para evaluar el transporte de sustancias o moléculas como pueden ser compuestos dietarios (Ej: flavonoides) (Vaidyanathan and Walle 2003) o xenobióticos, gracias a la presencia de proteínas transportadoras tanto de internalización como eflujo, con mecanismos tanto activos como pasivos. También se han utilizado como modelo para evaluar la captación de sustancias, como lípidos, en presencia de microorganismos probióticos, estudiando además la expresión diferencial de genes (Poinsot *et al.* 2020). Esta línea, además, se ha empleado para el estudio de factores de virulencia microbianos (Berin *et al.* 2002; Minnaard *et al.* 2007).

En el caso de estudiar el transporte de drogas, como un preámbulo al desarrollo de fármacos que se consuman por vía oral, el sistema nos permite analizar la absorción y además clasificar según el sistema de clasificación biofarmacéutica, BCS, que se describe en detalle en el capítulo 2 de esta tesis (Štětinová *et al.* 2009). Además, en la formulación de nanopartículas para ser utilizados como transportadores de compuestos activos, estas células han sido seleccionadas para evaluaciones de citotoxicidad, junto con otras líneas celulares como las HeLa (Pradines *et al.* 2015).

Si bien existen muchos clones de las células Caco-2, nosotros hemos llevado a cabo nuestros estudios utilizando el clon TC7, aislado de un pasaje tardío de la línea parental. Éste tiene la característica de presentar una población celular más

homogénea, sin domos y con uniones intercelulares más desarrolladas (Chantret *et al.* 1994; Turco *et al.* 2011) y además cuenta con la gran ventaja de presentar un tiempo de duplicación de 24 h (frente a 34 h para la línea progenitora), lo que permite su diferenciación completa en 7 días. Esta línea, como se mencionó previamente, tiene propiedades que se asemejan a las del epitelio del intestino delgado. Entre estas podemos nombrar un grado mayor de diferenciación acreditado por una mayor actividad de la enzima fosfatasa alcalina, y menores valores de TEER comparados con la línea parental (Zucco *et al.* 2005).

Teniendo en cuenta que el consumo diario de alimentos probióticos puede llevar a una colonización del tracto gastrointestinal con estas bacterias benéficas que cuentan con la capacidad de adherirse al epitelio (Fontaine, Aissi and Bouquelet 1994; Pérez *et al.* 1998; Plaza-Diaz *et al.* 2019), resulta importante evaluar el transporte de AC, droga lipofílica, y su internalización, en presencia de las cepas CIDCA 5310, CIDCA 5317 y ATCC 314 en un modelo validado de epitelio intestinal humano en cultivo.

En este mismo sentido, la utilización de la resistencia eléctrica transepitelial (TEER), como parámetro de evaluación de integridad de las uniones intercelulares estrechas y por ende del funcionamiento de la monocapa (Srinivasan *et al.* 2015), nos permite estudiar modificaciones que pueden sufrir las células en contacto con las cepas bacterianas y/o la droga, otorgándonos valiosa información considerando que la integridad de la barrera epitelial es vital para sus actividades fisiológicas.

Ya se ha estudiado que las células Caco-2/TC7 presentan varias enzimas metabólicas como las pertenecientes a la familia del citocromo P450 (Raeissi *et al.* 1997), y la UDP-glucuronosil transferasa (Zhang *et al.* 2013). Teniendo en cuenta que la familia de enzimas del citocromo P450 es la responsable de la metabolización que sufre el AC en el organismo, y que las células intestinales también expresan enzimas de esta familia (Engman *et al.* 2001; Küblbeck *et al.* 2016), nos propusimos analizar que sucedía con la expresión de Cyp3a4 y Cyp2c9, en presencia de las cepas y la droga.

Resultados previos de esta tesis (Capítulo I y II) demuestran que las cepas son capaces de modificar la molécula de AC, así como también su entorno, entonces resulta importante evaluar qué sucede en un modelo donde se encuentran con células epiteliales intestinales, que constituyen la interfase fisiológica en la absorción de compuestos.

El objetivo del presente capítulo fue evaluar, en presencia de bacterias probióticas, la distribución de la droga y la expresión de citocromos, en un modelo de células epiteliales Caco-2/TC7.

2- Materiales y Métodos

2.1 Pasaje de acenocumarol en células Caco-2/TC7

A partir de una placa con 12 insertos (Corning®, EEUU) se cultivaron células Caco-2/TC7 en medio DMEM al 15 % de suero fetal bovino (SFB) en estufa gaseada con 5 % de CO_2 . Los insertos utilizados fueron de 12 mm con un diámetro de poro de membrana de policarbonato de 3 μ m.

Durante diez días se midió día por medio el valor del TEER utilizando un voltímetro equipado con dos electrodos (Millicell-ERS2 Volt-Ohm Meter, MilliporeSigma^{IM}, EEUU). Una vez estabilizados en valores mayores a 600 $\mu\Omega$.cm², indicio de una monocapa confluente, se procedió a la realización del ensayo. Para esto, en primera medida, se realizó un cambio del medio de cultivo, agregando 200 μ l en el compartimento apical del sistema y 500 μ l en el compartimento basolateral.

Previamente, se realizaron los cultivos de las tres cepas en estudio de 24 h de crecimiento que fueron separados en microtubos y lavados 3 veces con PBS, centrifugando 5 minutos a 3550 g. Al finalizar los lavados, se suspendieron los pellets en DMEM con 15 % SFB y se ajustaron a una DO_{600nm} = 2. Según correspondiese, se colocaron 10 μ l de cultivo en el compartimento apical de las fosas. Se distribuyó, según correspondiese, 20 μ l de una solución de AC 1,6 mg/ml en DMEM al 15% SFB también en el compartimento apical (concentración final de AC 0,16 mg/ml).

La placa de células fue luego incubada 18 h en las condiciones antes mencionadas. Transcurrido este tiempo se procedió a tomar muestras tanto de los compartimentos apical como basolateral del sistema para luego ser evaluadas por HPLC.

Por último, luego de la toma de muestra, se agregó medio DMEM fresco y se procedió a la lectura del TEER post incubación.

2.2 Internalización de AC en células Caco-2/TC7

Para este ensayo se crecieron células Caco-2/TC7 en placas de 24 fosas durante 7 d hasta confluencia en medio DMEM con 15 % SFB, a 37 °C en atmósfera de 5 % de CO_2 . Además, se crecieron las cepas bacterianas en caldo MRS durante 24 h en anaerobiosis a 37 °C y el día de la experiencia se tomó 1 ml de cada cultivo, se centrifugó 5 min a 3550 g y se lavó dos veces con PBS. Luego los pellets se suspendieron en medio DMEM 15% SFB y se ajustaron a $DO_{600nm} = 2$.

Se colocaron 500 μ l de DMEM por fosa, 50 μ l de una solución de AC 1,6 mg/ml (Concentración final de AC 0,16 mg/ml) y 25 μ l de la suspensión bacteriana (DO_{600nm} = 2) según correspondiese. Luego, se incubó la placa durante 24 h a 37 °C en atmósfera de 5 % de CO₂. Transcurrido ese tiempo, se tomó el sobrenadante con cuidado de no

levantar las células y se reemplazó el medio con 1 ml de H_2O destilada estéril para volver a incubar la placa 1 h en las mismas condiciones para favorecer la lisis celular.

Por último, se colectaron las fracciones lisadas y se almacenaron a -20 °C hasta su análisis por HPLC.

2.3 PCR cuantitativa (qPCR)

2.3.1 Obtención de muestras

Para realizar estos ensayos, se crecieron las cepas durante 24 h en anaerobiosis y se procedió de la misma manera antes mencionada para llevar a $DO_{600nm} = 2$ (punto 4, protocolo 2.1)

Además, se crecieron células Caco2/TC7 durante 1 semana en placas de 6 pocillos, en las mismas condiciones antes mencionadas. El día de la experiencia, se renovó el medio de cultivo y según correspondiese se agregaron 100 μ l de AC (concentración final 0,16 mg/ml) y 50 μ l de la suspensión bacteriana. La placa fue incubada 18 h y transcurrido este tiempo, se procedió a la obtención del ARNm de las muestras

2.3.2 Extracción de ARN

Se realizó la extracción según protocolo del reactivo Bio-Zol (PBL Productos Bio Lógicos, Bernal, Buenos Aires, Argentina) para células en cultivo. Para esto, se lisaron las células añadiendo directamente 1 ml de Bio-Zol en la placa de cultivo pipeteando varias veces. Se incubaron las muestras homogenizadas por 5 minutos a temperatura ambiente para permitir una disociación completa de los complejos núcleoproteicos. Luego, se añadieron 0,2 ml de cloroformo por fosa y el volumen de las muestras fue trasladado a microtubos. Estos se agitaron vigorosamente por 15 s y se incubaron a temperatura ambiente por 2-3 min para ser centrifugados a 12000 g durante 10 min a 4 °C. Luego de centrifugar la mezcla, se tomó la fase superior donde se encontraba el ARN. En esta fase acuosa se precipitó el ARN agregando 0,5 ml de alcohol isopropílico y se incubaron las muestras 20 min a -20 °C para luego ser centrifugadas durante 10 minutos a 12000 g a 4 °C. El pellet obtenido se lavó con 1 ml de etanol al 75 %. Se mezcló la muestra en vórtex y se volvió a centrifugar a 12000 g durante 5 minutos a 4 °C. El sobrenadante fue descartado y finalmente el pellet seco fue suspendido en 20 µl de agua libre de RNasa. Las muestras se almacenaron a -80 °C hasta la evaluación de la extracción y posterior retrotranscripción.

2.3.3 Eficiencia de extracción

Para evaluar la calidad de nuestra extracción se realizó la medida de absorbancia utilizando el equipo NanoDrop (Thermo Scientific™ NanoDrop™ 2000/2000c), donde se obtienen los ng/µl de ARN por muestra, además de las relaciones de absorbancia 260/280 nm y 260/230 nm. La primera relación se utiliza para evaluar contaminaciones por proteínas, y la última para estimar interferencias por solventes remanentes del proceso de extracción.

2.3.4 Remoción del ADN remanente y retrotranscripción

Una vez evaluada la calidad de las muestras, se continuó con los pasos de eliminación del ADN remanente para luego realizar la retrotranscripción a ADNc que se utilizó como molde en las reacciones de qPCR.

a. Tratamiento con DNAsa

Se realizó la siguiente mezcla según el protocolo del fabricante (PBL Productos Bio Lógicos, Bernal, Buenos Aires, Argentina)

En un tubo de reacción libre de RNAsas se agregó:

- 1μg de RNA
- 1µl de buffer 10x RDD
- 1μl de DNAsa (1 U)
- H₂O hasta 10 μl finales

Se Incubó 20 min a 25 °C y transcurrido ese tiempo se inactivó la reacción con el agregado de 1 μ l de EDTA 50 mM. Se incubó 10 min a 65 °C.

b.Retrotranscripción

Se realizaron las siguientes mezclas según protocolo para la enzima M-MLV transcripta (PBL Productos Bio Lógicos, Bernal, Buenos Aires, Argentina)

Mezcla de reacción 1

En un tubo de reacción libre de RNAsas se agregó:

- 2 μl de *random primers* (10 μM). En este caso se utilizaron los hexámeros al azar de Biodynamics en una dilución 1/10.
- 1 μg de ARN total
- 2 μl dNTPs
- Se completó con agua hasta un volumen de 15 μl.

Se incubó a 70 °C durante 5 min.

Luego, se transfirió inmediatamente a hielo durante 2 min

Mezcla de reacción 2

Se agregaron a los tubos de reacción anteriores:

- 4 μl del buffer de reacción 5x
- 0,8 μl de inhibidor de RNAsa (RNase inhibitor 20 U/μl, PBL, Bernal Buenos Aires, Argentina).
- 0,5 μl de MgCl₂ 50 mM
- 1 μl (200U) de M-MLV Transcripta

Se mezcló suavemente el tubo de reacción y se incubó a 25 °C durante 10 min y luego a 37 °C durante 60 min.

Las muestras se almacenaron a -20 °C hasta la realización de la qPCR.

2.3.5 PCR en tiempo real (qPCR)

Para analizar la expresión relativa de los genes por qPCR, se utilizaron los siguientes volúmenes para la mezcla de reacción según protocolo del fabricante (PBL Productos Bio Lógicos, Bernal, Buenos Aires, Argentina) para un volumen final de $10~\mu l$ por muestra.

Tabla 3.1. Composición de la mezcla de reacción según el protocolo Master MIX qPCR 2.0- Sybr/ROX.

Reactivo	Volumen
Syber Green	5 μΙ
<i>Primer</i> Forward	0,3 μΙ
<i>Primer</i> Reverso	0,3 μΙ
H ₂ 0	1,4 μΙ
Molde	3 μΙ

Para todos los moldes de ADNc se realizó una dilución 1/10.

La reacción se llevó a cabo en un equipo BioRad CFX96 Real-Time System C1000 Touch Thermal Cycler (California, EEUU) con el siguiente programa:

a. Etapa de desnaturalización: 95 °C 10 min

b. Luego se realizaron 40 ciclos del siguiente esquema:

95 °C 0.15 seg 56 °C 0.30 seg 72 °C 10 min

En la siguiente tabla se detallan los *primers* utilizados. En todos los casos se realizó una dilución de trabajo 1/10 del stock.

Tabla 3.2. Secuencia de *primers* utilizados y sus correspondientes diluciones.

Gen		Secuencia		
в-actina	Pf	5'-CCTGGCACCCAGCACAAT-3'		
	Pr	5'-GCCGATCCACACGGAGTACT-3'		
сурЗа4	Pf	5'-CCAAATCAGTGTGAGGAGGTAG-3'		
	Pr	5'-CAGAGCTCAGGAGGAGTTAATG-3'		
cyp2c9	Pf	5'-CACGAGGTCCAGAGATACATTG-3'		
	Pr	5'-CACGAGGTCCAGAGATACATTG-3'		

Pf: primer forward

Pr: primer reverse

Cyp2c9: Citocromo P450 familia 2 subfamilia C miembro 9

Cyp3a4: Citocromo P450 familia 3 subfamilia A miembro 4

Ambas secuencias fueron diseñadas utilizando las bases de datos NCBI e IDT y sintetizadas por GBToligos (Genbiotech SRL, Buenos Aires).

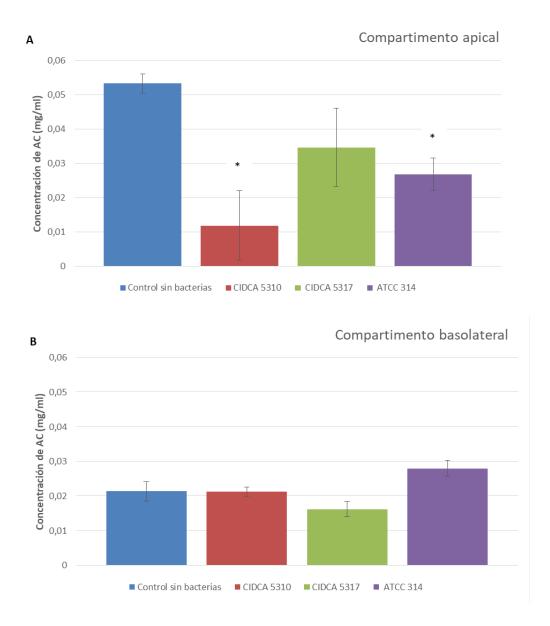
La secuencia del cebador para el gen del β -actina fue extraída del trabajo de Papa Gobbi y colaboradores (Papa Gobbi *et al.* 2016).

3. Análisis

El análisis de los experimentos de transporte e internalización fue realizado utilizando el software de Microsoft Excel y la prueba t de Student. Se consideraron diferencias significativas con p < 0,05.

Los gráficos y análisis de los valores de TEER fueron realizados con el software GraphPad Prism y el estadístico de prueba t. Se consideraron diferencias significativas con p < 0,05.

El análisis de la expresión relativa de genes se realizó según el método de cálculo de $2^{-\Delta\Delta Ct}$, siendo Ct el valor umbral del número de ciclos y utilizando el test de Kruskal-Wallis. Se analizaron dos muestras por duplicado por experimento y se calculó el promedio de los valores de Ct y la desviación estándar. Se consideraron diferencias significativas con p < 0,05.

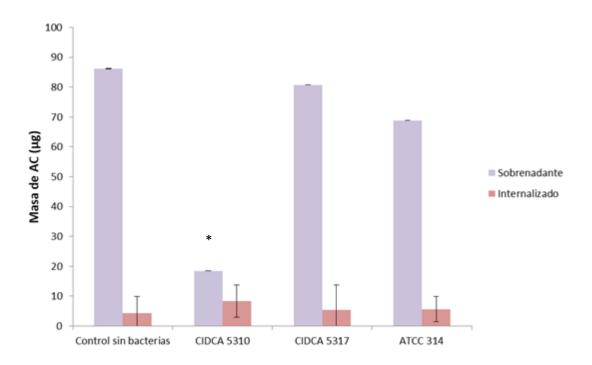

4. Resultados

Pasaje de AC a través de las monocapas de células Caco-2/TC7

Con el objetivo de estudiar el pasaje de AC a través de la monocapa celular (sentido apical-basolateral) se utilizó la línea Caco-2/TC7 cultivada en un sistema de insertos y se midió la concentración de AC en ambos compartimentos luego de 18 h de incubación con las diferentes cepas. La concentración inicial agregada a las fosas fue de 0,16 mg/ml de AC. Los resultados obtenidos se observan en la figura 3.1.

Comenzando con lo hallado para las fosas control que solo contenía medio DMEM, se puede ver que, si bien se observa pasaje de AC, la mayor concentración se encuentra en el compartimento apical del sistema (Figura 3.1). En el caso de las células a las cuales se les agregaron las bacterias, para la cepa CIDCA 5317 el comportamiento es el mismo que en el control mientras que para la cepa ATCC 314 las concentraciones en los compartimentos apical y basolateral se igualaron luego de la incubación.

Lo más llamativo ocurre con la cepa CIDCA 5310, donde hay una disminución del 78 %, de la droga en la cara apical con respecto al control. Por otro lado, en la cara basolateral la concentración de AC en presencia de la cepa es similar a la hallada en los controles. Salvo para la cepa ATCC 314, en todas las muestras estudiadas se destaca que, luego de las 18 h de incubación, no se llegan a igualar las concentraciones de AC en los compartimentos basolateral y apical (Figura 3.1).


Figura 3.1. Concentración de AC (mg/ml) en el compartimento apical (A) y basolateral (B) de los insertos, luego de incubar las células con la droga y las cepas bacterianas 18 h a 37 °C. Las barras indican desviación estándar de 3 medidas independientes. * Indica p<0.05 con respecto al control sin bacterias. Gráfico representativo de 3 ensayos independientes.

Internalización de AC en células Caco2/TC7

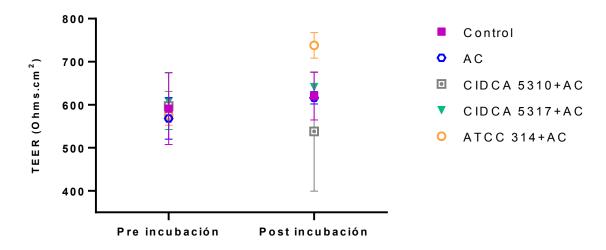
Con el objetivo de evaluar los posibles destinos del AC luego de la incubación que expliquen la disminución de su concentración en los ensayos de anteriores (Figura 3.1), se evaluó la concentración de droga en la monocapa, lo cual podría ser indicativo de internalización.

Es por este motivo que, como se observa en el gráfico 3.2, se compararon las masas de AC obtenidas en el sobrenadante de las fosas de cultivo y luego de la lisis celular por shock hipotónico con agua. La masa inicial de AC colocada en las fosas fue de 80 µg.

Primeramente, se advierte que, salvo para el caso de la cepa CIDCA 5310, la mayor parte del AC se encuentra en el medio extracelular mientras que la fracción internalizada es baja (Figura 3.2).

Figura 3.2. Masa de AC (μ g) cuantificada en el sobrenadante (violeta) y en las células posterior a la lisis (rojo), luego de la incubación con la droga y las cepas. Las barras indican desviación estándar de 3 medidas independientes. * Indica p < 0.05 con respecto al control. Gráfico representativo de 3 ensayos independientes.

Para las cepas CIDCA 5317 y ATCC 314, no se observan diferencias significativas con respecto al control en las muestras correspondientes al medio extracelular, así como tampoco en las muestras obtenidas luego de la lisis celular (Figura 3.2).


Además, tanto para el control como para las cepas ATCC 314 y CIDCA 5317, se comprobó que la totalidad de la masa de AC inicial agregada a las fosas se conservó.

Es destacable lo observado con la cepa CIDCA 5310, para la cual se presentan valores significativamente menores de AC en el sobrenadante ($18 \pm 1 \mu g$) que en el control ($86 \pm 4 \mu g$) (Figura 3.2). Otro punto que resulta interesante es que, al realizarse la suma de las masas obtenidas en los sobrenadantes y en la fracción internalizada para las muestras de esta cepa comprobamos que la masa no se corresponde con lo agregado inicialmente (es importante recordar en este punto que este ensayo no está realizado con el sistema de insertos). Esto permitiría pensar que hay parte del AC que puede estar siendo biotransformado ya que vemos un descenso de la masa pero que, con la sensibilidad del método, no nos es posible observar picos correspondientes a nuevas especies en el cromatograma. Estos resultados se encuentran en concordancia con lo observado en la figura 3.1 donde la cepa CIDCA 5310 genera una disminución significativa de AC en la cara apical del sistema de insertos.

Evaluación de la resistencia eléctrica transepitelial (TEER)

Con el propósito de utilizar el valor de TEER como parámetro de integridad de la monocapa que pudiese ayudar a explicar los efectos observados, se evaluaron los valores obtenidos antes y después de la incubación de las células con AC y las bacterias.

Como se aprecia en la figura 3.3, los valores al inicio son similares, oscilando entre 550 y 600 Ohms.cm², con una baja dispersión, lo que habla de una homogeneidad en las monocapas celulares que constituyeron el punto de partida para este ensayo.

Figura 3.3. Variación de los valores de TEER (Ohms.cm²) luego de la incubación de las células con AC y las cepas. Las barras indican desviación estándar de tres medidas independientes.

Luego de la incubación, sin embargo, se aprecia una dispersión mayor de los datos, consecuente con los posibles efectos tanto de las cepas como de la droga sobre la monocapa.

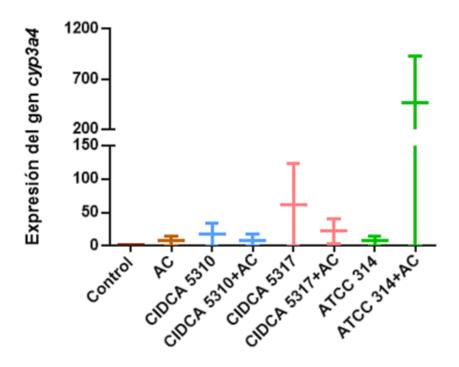
Comenzando con las fosas conteniendo a la cepa ATCC 314+AC, los valores de TEER aumentaron significativamente (p < 0,05) de 575,5 a 738 Ohms.cm 2 (Figura 3.3). Por otro lado, para las fosas conteniendo a la cepa CIDCA 5310+AC, los valores disminuyeron de 597 a 538 Ohms.cm 2 , si bien esta diferencia no fue significativa (Figura 3.3).

Para el resto de los grupos evaluados: control de células, control con AC y la cepa CIDCA 5317+AC no se observaron variaciones luego de la incubación.

Análisis de expresión relativa de genes por qPCR

La qPCR proporcionó datos muy interesantes con respecto a la expresión de enzimas pertenecientes a la familia del citocromo P450, enzimas encargadas en nuestro organismo de la metabolización del AC. En este sentido, esta técnica permitió evaluar

cambios en la expresión relativa de estos genes en las células Caco-2/TC7 en muestras conteniendo a las bacterias y también a la droga, que se observan en la figura 3.4.

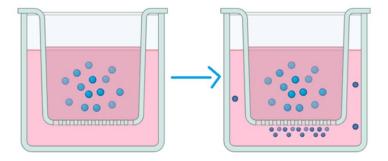

La expresión del gen *cyp3a4* en la condición control es baja y ésta no se modifica por la presencia de AC (Figura 3.4).

Además, cuando se incuban las células con la cepa ATCC 314+AC, se observa un aumento (no significativo) de la expresión de esta isoforma del citocromo, lo que no se aprecia cuando se encuentra la cepa sola (Figura 3.4).

En el caso de las muestras que contenían la cepa CIDCA 5317 sin el anticoagulante, también se ve un aumento de la expresión (no significativo) en contraste con lo que ocurre con la cepa ATCC 314+AC (Figura 3.4). En las muestras de esta cepa a las que también se les agregó el anticoagulante no se observa este comportamiento.

Por último, para la cepa CIDCA 5310, tanto sola como con el agregado de AC, no se observa un aumento de la expresión de *cyp3a4* (Figura 3.4).

Con respecto al gen *cyp2c9*, no se registraron curvas de amplificación para ninguna de las muestras evaluadas (datos no mostrados).


Figura 3.4. Expresión relativa del gen del citocromo 3a4 en células Caco2/TC7 en presencia y ausencia del AC y de las cepas CIDCA 5310, CIDCA 5317 y ATCC 314 evaluada mediante qPCR. Los resultados muestran un experimento significativo de tres ensayos diferentes. Las barras muestran la desviación estándar de dos muestras independientes.

5. Discusión

Las células del epitelio intestinal desempeñan un rol muy importante tanto por su función de barrera, como la absorción de fármacos y la expresión de diversas enzimas que puedan afectar el metabolismo de estas moléculas. Los capítulos anteriores se centraron en la evaluación de los efectos bacteria-droga, y bacteria-entorno que indirectamente tengan un impacto sobre la droga. Sin embargo, no se debe dejar de lado la relevancia funcional de las células epiteliales intestinales para las drogas que son administradas por vía oral, por lo que también esta interacción tripartita amerita ser evaluada.

Las drogas lipofílicas en general se absorben de forma pasiva por la vía transcelular, dado que se distribuyen a lo largo de la gran superficie que representa el ribete en cepillo de las células epiteliales, siendo la vía paracelular usada por drogas que por su carácter hidrofílico no son bien absorbidas por las membranas plasmáticas (Artursson, Palm and Luthman 2012).

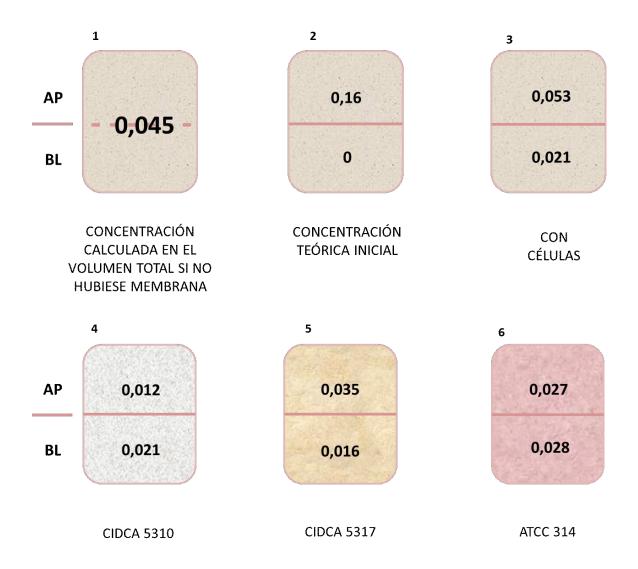

Al ser el AC una droga lipofílica, ésta puede atravesar la membrana celular. Considerando los resultados obtenidos y el modelo utilizado, la absorción por un mecanismo pasivo será función del gradiente de concentración. Más aún, pensando en la dinámica del sistema de insertos, la formación de un gradiente de concentración dependería de la difusión de las moléculas de AC en el compartimento basolateral del sistema hacia el resto de la fosa ya que no hay un mecanismo de agitación. Es por esto que la mayoría de las moléculas de droga que atraviesen la monocapa quedarán localizadas en la zona adyacente a la cara basolateral, creando una alta concentración local de la droga con la consiguiente disminución del gradiente y la fuerza impulsora para el pasaje. Como resultado, el movimiento neto de moléculas sería menor y, además, al tomar la muestra luego de la incubación, se reduciría la concentración ya que todas esas moléculas cercanas a la cara basolateral se distribuirían en un volumen mayor al mezclar. Este mecanismo se encuentra ilustrado en la figura 3.5.

Figura 3.5. Esquematización del proceso de transporte en el sistema de insertos. Se puede observar la acumulación de moléculas de AC en el compartimento basolateral, lo que disminuye el gradiente de concentración que impulsa el movimiento.

Para reforzar la discusión de estos resultados se encuentran diagramados en la figura 3.6 las diferentes condiciones evaluadas en el ensayo de pasaje de droga a través de la monocapa y las concentraciones obtenidas tanto en el compartimento apical (AP) como basolateral (BL), luego de la incubación. Además, se encuentran los datos teóricos de la concentración inicial del sistema si no existiese una membrana divisoria (calculada teniendo en cuenta la dilución del AC en la suma del volumen total de ambos compartimentos) y el valor teórico al inicio del ensayo, previo al pasaje de droga al compartimento basolateral (Figura 3.6-1 y 3.6-2).

Si se observan las concentraciones en la cara basolateral obtenidas para todos los casos evaluados, se aprecia que son muy similares. El hecho que la concentración en el compartimento basolateral sea similar para todas las condiciones, y en particular para el caso de la cepa ATCC 314 se iguale a la concentración apical permite sustentar la hipótesis de un pasaje de moléculas de AC por mecanismos pasivos.

Figura 3.6. Diagrama de las concentraciones de AC (mg/ml) obtenidas en los compartimentos apicales (AP) y basolaterales (BL) luego de la incubación en las diferentes condiciones ensayadas. Además, se agrega el valor inicial de AC (mg/ml) calculado teniendo en cuenta los volúmenes de ambos compartimentos (1) y la concentración inicial teórica (2).

Continuando con las bifidobacterias, para la cepa CIDCA 5310 (Figuras 3.6-4) se observa una disminución significativa de la concentración de AC en el compartimento apical, en comparación con la obtenida en el control (Figura 3.6-3). Esto podría explicarse por una actividad enzimática de las bacterias sobre el AC como se describió

en capítulos precedentes, lo que generaría una biomodificación de la molécula, aunque en este caso no se observaron picos secundarios por HPLC, lo que puede deberse a la baja concentración de estas nuevas especies que no se detectarían por el método analítico. Además, resulta necesario considerar la actividad metabólica de los enterocitos sobre la droga como consecuencia de la interacción bacteria-células, ya sea por la liberación de enzimas del enterocito al medio o mayor expresión de enzimas intracelulares. Esta cepa presenta una alta adhesión a células Caco-2 (Pérez *et al.* 1998), que no genera una alteración de la integridad celular, dados los valores de TEER obtenidos y que no se encuentra una mayor concentración de droga en el compartimento basolateral. Los ensayos de internalización están en línea con la metabolización de la droga en un ambiente intestinal en presencia de la cepa CIDCA 5310, dado que se observó una disminución significativa de la concentración en el sobrenadante del cultivo.

En relación a la cepa CIDCA 5317 se observa mayor concentración en el compartimento apical, lo que podría estar en línea con la participación de bombas de eflujo, como los transportadores P-gp. La glicoproteína-P (PGP) es un trasportador de eflujo de amplio espectro conocido por condicionar la biodisponibilidad y farmacocinética de ciertas drogas, incluidos los anticoagulantes orales (Gschwind *et al.* 2013). Este transportador se encuentra presente en las células epiteliales intestinales humanas, entre ellas, en las células Caco-2 (Schaiquevich, Hermida and Rubio 2006; Espana, Couturier and Prouillac 2017) y su localización es predominantemente apical en estas células polarizadas dando lugar a un flujo de AC desde el interior celular hacia el compartimento apical. Aunque no hemos evaluado el eflujo, los resultados son compatibles con la participación de transportadores de este tipo.

Diferentes isoformas del citocromo P450 han sido reportadas en células Caco-2, como Cyp3a4, Cyp3a5 y Cyp1a1 (Raeissi et al. 1997; Engman et al. 2001; Violante et al. 2014; Küblbeck et al. 2016). Tanto los transportadores antes descriptos como estas enzimas trabajan en conjunto en el metabolismo del primer paso de drogas que se absorben por vía oral, resultando indispensable analizar su interacción (Vranckx, Valgimigli and Heidbuchel 2018). Es importante destacar que la línea Caco-2 es ampliamente utilizada para evaluar diferentes propiedades probióticas si bien presenta dificultades en su capacidad de expresión de citocromos. En este sentido se han estudiado varios mecanismos inductores, ya sea utilizando algún compuesto como la vitamina D₃, como por transfección (Engman et al. 2001; Küblbeck et al. 2016). Además, Engman y colaboradores demostraron que la línea TC7 presentaba una mayor capacidad de inducción de la isoforma 3a4 cuando era estimulada con vitamina D₃ frente a la línea parental y Violante (Violante et al. 2014) concluyó que la expresión de esta proteína era mayor a 21 días de cultivo respecto a tiempos cortos (3 días) (Engman et al. 2001).

Los resultados muestran que el valor promedio más alto de la expresión de la isoforma 3a4, se obtiene en presencia de la cepa ATCC 314 + AC seguido del valor registrado para la cepa CIDCA 5317 sola. Si bien las diferencias no son significativas, la dispersión de los datos podría indicar un efecto sobre la expresión de este citocromo. Este efecto regulatorio de las bacterias ya se ha descripto en células Caco-2, observando que los microorganismos o sus inmunógenos son capaces de aumentar o disminuir la expresión de ciertos genes como citoquinas y proteínas inflamatorias, así como enzimas que intervienen en el metabolismo propio de los enterocitos indicando una fuerte capacidad de afectar su homeostasis (Bahrami et al. 2011; Qin et al. 2023). Es importante remarcar que si bien, como se mencionó anteriormente, las células Caco-2 carecen de una alta expresión de enzimas metabólicas de la familia P450, el sistema de estudio propuesto en esta tesis, ha permitido observar diferencias entre las muestras evaluadas, dando la posibilidad perfeccionar modelo interacción bacteria/droga/células de nuestro de intestinales.

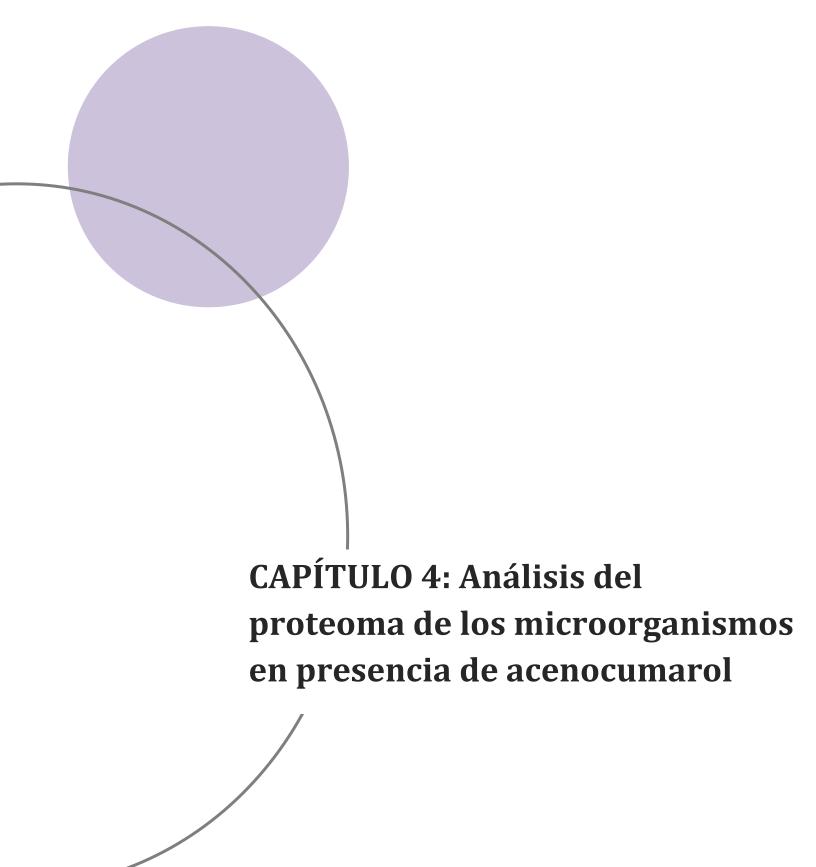
Más aún, con respecto a las diferentes isoformas de las proteínas pertenecientes a la familia P450 presentes en el epitelio intestinal, se conoce que el 80 % corresponde a la isoforma 3a4 mientras que solo el 15 % a la isoforma 2c9 (Elefterios and Bezirtzoglou 2012). Esto nos permite suponer que la expresión de las isoformas de esta familia enzimática dependerá también del clon de células utilizado. En este sentido, se podría pensar que el clon con el que se llevaron a cabo los ensayos descriptos en este capítulo presenta una baja expresión de la isoforma 2c9, lo que se correspondería con la ausencia de amplificación mediante qPCR.

Varios autores han descripto la implicancia de bacterias probióticas en la farmacocinética de ciertas drogas, enfocando sus estudios en la alteración de la expresión de enzimas pertenecientes a la familia del citocromo P450 (Matušková 2011; Matuskova et al. 2014; Banoth et al. 2020; Liu et al. 2021). Liu y colaboradores hallaron que la bacteria *Lactobacillus rhamnosus* era capaz de aumentar la expresión y actividad del citocromo 3A modificando la farmacocinética del verapamilo, además de modificar la composición de la microbiota en ratas (Liu et al. 2021). En esta misma línea, Matuskova y colaboradores encontraron que la administración de la cepa E. coli Nissle 1917 a ratas era capaz de modificar la biodisponibilidad de la amiodarona, postulando un aumento de la expresión de las enzimas Cyp2C (Matuskova et al. 2014). Este mismo grupo de investigación años antes encontró un efecto diferente al administrar una cepa de L. casei en ratas y evaluar la modificación de la expresión de citocromos tanto en hígado como intestino delgado. Encontraron que esta cepa era capaz de disminuir la expresión de diferentes isoformas de los citocromos en ambos órganos en estudio (Matušková 2011). Otro estudio reveló que cepas probióticas administradas a ratones libres de gérmenes modulaban la expresión de citocromos a nivel de ARNm y a nivel de proteína (Jourová et al. 2017). Los hallazgos del presente capitulo compatibilizan con estos resultados obtenidos en bibliografía para la cepa de

lactobacilos, lo que podría afectar la farmacocinética *in vivo* del anticoagulante por un aumento de la metabolización de la droga por enzimas del citocromo P450. De todas maneras, en un escenario *in vivo*, no es menor mencionar que el aumento de la expresión de enzimas no necesariamente se correlacione con un aumento de la actividad ya que podría estar sujeto a regulaciones adicionales.

En capítulos previos de esta tesis se ha demostrado la capacidad de las bacterias de modificar la concentración de AC in vitro y además de modificar el entorno, lo que afecta la disolución de la droga en medios biorelevantes. En este capítulo se estudió la interacción con células Caco-2/TC7, para ampliar el conocimiento de la relación drogamicroorganismos probióticos en el entorno intestinal, lo que resulta clave para este tipo de fármacos con estrecho margen terapéutico donde una variación en la concentración por alteración de la absorción y/o metabolización podría impactar profundamente en su efecto. Se observa que las cepas probióticas son capaces de modificar la concentración de droga, en particular la cepa CIDCA 5310. Esto podría ser explicado, además de por la propia actividad bacteriana sobre la droga, por un aumento de enzimas de las células epiteliales liberadas al medio como también podría ser resultado de una modificación del fármaco en el medio intracelular. Más aún, la información obtenida para la cepa ATCC 314 con acenocumarol sobre la expresión del citocromo 3a4, demuestra que los lactobacilos tienen la capacidad de modular la expresión de enzimas metabolizadoras de drogas, lo que podría influir en su farmacocinética. Como se verá más adelante en esta tesis, estos últimos resultados serán relevantes para la discusión del modelo in vivo.

6. Bibliografía


- Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. *Adv Drug Deliv Rev* 2012;**64**:280–9.
- Bahrami B, Child MW, Macfarlane S, Macfarlane GT. Adherence and cytokine induction in Caco-2 cells by bacterial populations from a three-stage continuous-culture model of the large intestine. *Appl Environ Microbiol* 2011;**77**:2934–42.
- Banoth S, Tangutur AD, Anthappagudem A, Ramaiah J, Bhukya B. Cloning and in vivo metabolizing activity study of CYP3A4 on amiodarone drug residues: A possible probiotic and therapeutic option. *Biomed Pharmacother* 2020;**127**, DOI: 10.1016/j.biopha.2020.110128.
- Berin MC, Darfeuille-Michaud A, Egan LJ, Miyamoto Y, Kagnoff MF. Role of EHEC O157:H7 virulence factors in the activation of intestinal epithelial cell NF-κB and MAP kinase pathways and the upregulated expression of interleukin 8. *Cell Microbiol* 2002;**4**:635–48.
- Bi YA, Lin J, Mathialagan S, Tylaska L, Callegari E, Rodrigues AD, Varma MVS. Role of Hepatic Organic Anion Transporter 2 in the Pharmacokinetics of R-and S-Warfarin: In Vitro Studies and Mechanistic Evaluation. *Mol Pharm* 2018;**15**:1284–95.
- Caro I, Boulenc X, Rousset M, Meunier V, Bourrié M, Julian B, Joyeux H, Roques C, Berger Y, Zweibaum A, Fabre G. Characterisation of a newly isolated Caco-2 clone (TC-7), as a model of transport processes and biotransformation of drugs. *Int J Pharm* 1995;**116**:147–58.
- Chantret I, Rodolosse A, Barbat A, Dussaulx, Brot-Laroche, Zweibaum, Rousset.

 Differential expression of sucrase-isomaltase in clones isolated from early and late passages of the cell line Caco-2: evidence for glucose-dependent negative regulation. *J Cell Sci* 1994:213–25.
- Dewald TA, Becker RC. The pharmacology of novel oral anticoagulants. *J Thromb Thrombolysis* 2014;**37**:217–33.
- Elefterios E, Bezirtzoglou V. Intestinal cytochromes P450 regulating the intestinal microbiota and its probiotic profile. *Microb Ecol Health Dis* 2012;**23**:1–10.
- Engman HA, Lennerna È S H, Taipalensuu J, Otter C, Leidvik B, Artursson P. *CYP3A4, CYP3A5, and MDR1 in Human Small and Large Intestinal Cell Lines Suitable for Drug Transport Studies.*, J Pharm Sci.2001 Nov;90(11):1736-51.
- Espana B, Couturier S, Prouillac C. Role of ABC transporters in trans-epithelial transport of vitamin K antagonists. *Biopharm Drug Dispos* 2017;**38**:20–32.
- Fogh JM, Orfeo T. One Hundred and Twenty-Seven Cultured Human Tumor Cell Lines Producing Tumors in Nude Mice., JNCI: Journal of the National Cancer Institute, Volume 59, Issue 1, July 1977, Pages 221–226.
- Fontaine IF, Aissi EA, Bouquelet J-L. In Vitro Binding of Bifidobacterium Bifidum DSM

- 20082 to Mucosal Glycoproteins and Hemagglutinating Activity., Current Microbiology 28, 1994, 325–330.
- Frans G.M. Russel. Transporters: Importance in Drug Absorption, Distribution, and Removal. *Enzyme- and Transporter-Based Drug-Drug Interactions: Progress and Future Challenges*. 2010, 27–49.
- Goodman L, Gilman A. Goodman and Gilman's The Pharmacological basis of Therapeutics. *McGraw Hill Med* 2018:2047.
- Gschwind L, Rollason V, Daali Y, Bonnabry P, Dayer P, Desmeules JA. Role of P-glycoprotein in the uptake/efflux transport of oral vitamin K antagonists and rivaroxaban through the caco-2 cell model. *Basic Clin Pharmacol Toxicol* 2013;**113**:259–65.
- Jourová L, Anzenbacher P, Lišková B, Matušková Z, Hermanová P, Hudcovic T, Kozáková H, Hrnová L, Anzenbacherová E. Colonization by non-pathogenic bacteria alters mRNA expression of cytochromes P450 in originally germ-free mice. *Folia Microbiol (Praha)* 2017;**62**:463–9.
- Küblbeck J, Hakkarainen JJ, Petsalo A, Vellonen KS, Tolonen A, Reponen P, Forsberg MM, Honkakoski P. Genetically Modified Caco-2 Cells with Improved Cytochrome P450 Metabolic Capacity. *J Pharm Sci* 2016;**105**:941–9.
- Liu J, Cheng Y, Zhang Y, Huang S, Liu Z, Wang X. Lactobacillus rhamnosus induces CYP3A and changes the pharmacokinetics of verapamil in rats. *Toxicol Lett* 2021;**352**:46–53.
- Liu X, Guoyu P. *Drug Transporters in Drug Disposition, Effects and Toxicity*. Book: Advances in Experimental Medicine and Biology. Springer Nature Singapore, 2019.
- Matuskova Z, Anzenbacherova E, Vecera R, Tlaskalova-Hogenova H, Kolar M, Anzenbacher P. Administration of a probiotic can change drug pharmacokinetics: Effect of E. coli Nissle 1917 on amidarone absorption in rats. *PLoS One* 2014;**9**:3–7.
- Matušková Z et al. Effects of Lactobacillus casei on the expression and the activity of cytochromes P450 and on the CYP mRNA level in the intestine and the liver of male rats. *Neuroendocr Lett* 2011;**32**:8–14.
- Minnaard J, Delfederico L, Vasseur V, Hollmann A, Rolny I, Semorile L, Pérez PF. Virulence of Bacillus cereus: A multivariate analysis. *Int J Food Microbiol* 2007;**116**:197–206.
- Papa Gobbi R, De Francesco N, Bondar C, Muglia C, Chirdo F, Rumbo M, Rocca A, Toscano MA, Sambuelli A, Rabinovich GA, Docena GH. A galectin-specific signature in the gut delineates Crohn's disease and ulcerative colitis from other human inflammatory intestinal disorders. *BioFactors* 2016;**42**:93–105.
- Pérez PF, Minnaard Y, Disalvo EA, De Antoni GL. Surface properties of bifidobacterial strains of human origin. *Appl Environ Microbiol* 1998;**64**:21–6.

- Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. Mechanisms of Action of Probiotics. *Advances in Nutrition*. Vol 10. Oxford University Press, 2019, S49–66.
- Poinsot P, Penhoat A, Mitchell M, Sauvinet V, Meiller L, Louche-Pélissier C, Meugnier E, Ruiz M, Schwarzer M, Michalski MC, Leulier F, Peretti N. Probiotic from human breast milk, Lactobacillus fermentum, promotes growth in animal model of chronic malnutrition. *Pediatr Res* 2020;**88**:374–81.
- Pradines B, Lievin-Le Moal V, Vauthier C, Ponchel G, Loiseau PM, Bouchemal K. Cell line-dependent cytotoxicity of poly(isobutylcyanoacrylate) nanoparticles coated with chitosan and thiolated chitosan: Insights from cultured human epithelial HeLa, Caco2/TC7 and HT-29/MTX cells. *Int J Pharm* 2015;**491**:17–20.
- Qin G, Zhao Y, Gan Y, Yu X, Zhao Y, Peng H, Fang S. Alterations in gene expressions of Caco-2 cell responses to LPS and ploy(I:C) stimulation. *PeerJ* 2023;**11**:1–16.
- Raeissi SD, Guo Z, Dobson G., Artursson P, Hidalgo I. Comparison of CYP3A activities in a subclone of Caco-2 cells (TC7) and human intestine. Pharm Res. 1997 Aug;14(8):1019-25
- Rousset M. The Human Colon Carcinoma Cell Lines HT-29 and Caco-2: Two in Vitro Models for the Study of Intestinal Differentiation., Biochimie. 1986 Sep;68(9):1035-40.
- Sambuy Y, De Angelis I, Ranaldi G, Scarino ML, Stammati A, Zucco F. *The Caco-2 Cell Line as a Model of the Intestinal Barrier: In£uence of Cell and Culture-Related Factors on Caco-2 Cell Functional Characteristics*. Cell Biol Toxicol, Springer 2005 Jan;21(1):1-26.
- Schaiquevich P, Hermida M, Rubio M. P-glycoprotein: implication in drug pharmacokinetics and pharmacodynamics. *Rev Pharm* 2006;**148**.
- Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER Measurement Techniques for In Vitro Barrier Model Systems. *J Lab Autom* 2015;**20**:107–26.
- Štětinová Ě, Smetanová L, Kholová D, Svoboda Z, Květina J. Transepithelial transport of ambroxol hydrochloride across human intestinal Caco-2 cell monolayers. *Gen Physiol Biophys* 2009;**28**:309–15.
- Tassies D, Freire C, Pijoan J, Maragall S, Monteagudo J, Ordinas A, Reverter JC. Pharmacogenetics of acenocoumarol: Cytochrome P450 CYP2C9 polymorphisms influence dose requirements and stability of anticoagulation. *Haematologica* 2002;**87**:1185–91.
- Turco L, Catone T, Caloni F, Consiglio E Di, Testai E, Stammati A. Caco-2/TC7 cell line characterization for intestinal absorption: How reliable is this in vitro model for the prediction of the oral dose fraction absorbed in human? *Toxicol Vitr* 2011;**25**:13–20.
- Ufer M. Comparative Pharmacokinetics of Vitamin K Antagonists. *Clin Pharmacokinet* 2005;**44**:1227–46.

- Vaidyanathan JB, Walle T. Cellular Uptake and Efflux of the Tea Flavonoid (-)-Epicatechin-3-gallate in the Human Intestinal Cell Line Caco-2. *J Pharmacol Exp Ther* 2003;**307**:745–52.
- Violante G Da, ZERROUK N, RICHARDS I, FRENDO J-L, ZHIRI A. Short Term Caco-2/TC7 Cell Culture: Comparison between of Conventional 21-d and a Commercially Available 3-d System. *Biol Pharm Bull* 2014;**27**.
- Volpe DA. Drug-permeability and transporter assays in Caco-2 and MDCK cell lines. *Future Med Chem* 2011;**3**:2063–77.
- Vranckx P, Valgimigli M, Heidbuchel H. The significance of drug-drug and drug-food interactions of oral anticoagulation. *Arrhythmia Electrophysiol Rev* 2018;**7**:55–61.
- Zhang X, Song J, Shi X, Miao S, Li Y, Wen A. Absorption and metabolism characteristics of rutin in caco-2 cells. *Sci World J* 2013;**2013**, DOI: 10.1155/2013/382350.
- Zucco F, Batto AF, Bises G, Chambaz J, Chiusolo A, Consalvo R, Cross H, Dal Negro G, De Angelis I, Fabre G, Guillou F, Hoffman S, Laplanche L, Morel E, Pinçon-Raymond M, Prieto P, Turco L, Ranaldi G, Rousset M *et al.* An inter-laboratory study to evaluate the effects of medium composition on the differentiation and barrier function of Caco-2 cell lines. *ATLA Altern to Lab Anim* 2005;**33**:603–18.

1. Introducción

La proteómica es el análisis sistemático de proteínas, particularmente sus interacciones, modificaciones, localización y funciones (Chandramouli and Qian 2009). La cuantificación y análisis de péptidos fueron revolucionados por los métodos basados en espectrometría de masas y adaptados, recientemente, a análisis de miles de proteínas en células o líquidos corporales (Hasin, Seldin and Lusis 2017). Esta valiosa técnica nos permite estudiar el comportamiento de una célula en diversos ambientes o entornos. Al ser las proteínas las encargadas de la función biológica de las células, el nivel de expresión de las mismas es reflejo de cambios en la funcionalidad celular (Coiras *et al.* 2008).

Las técnicas comprendidas dentro de las "ómicas" se han utilizado para el estudio en detalle de la composición y función de la microbiota (Aires and Butel 2011). Si bien hoy en día la metagenómica y el estudio de la secuencia del gen del ARNr 16s permiten analizar composición y diversidad microbiana en diversas muestras, presenta una gran limitación ya que no determina el resultado de la expresión de los genes. En este sentido, cobran relevancia la proteómica y metabolómica para caracterizar los productos de la expresión génica (Aires and Butel 2011).

Como ya se ha discutido previamente en esta tesis, si bien es sabido que las bacterias probióticas ejercen efectos benéficos sobre el huésped, la base molecular de estos efectos aún se encuentra en estudio. Es aquí donde adquieren importancia estas técnicas permitiéndonos ahondar en el conocimiento de este complejo sistema bacteria-húesped. Sanchez y colaboradores han analizado el proteoma de cepas de Bifidobacterium longum frente a diferentes estímulos, como la presencia de sales biliares y un pH ácido (Sánchez et al. 2005, 2007). La adaptación y tolerancia al estrés ocasionados por estos factores son puntos limitantes de la supervivencia de las bacterias en el tracto intestinal. En este sentido los investigadores hallaron varias enzimas cuya expresión se veía diferencialmente regulada en presencia tanto de sales biliares como de una alta concentración de protones, lo cual indicaba un cambio en el metabolismo bacteriano para sobrevivir en estas nuevas condiciones (Sánchez et al. 2005, 2007). Además, Lv y colaboradores analizaron el transcriptoma y proteoma de una cepa de Lactobacillus salivarus frente al estrés inducido por sales biliares, encontrando que la respuesta a la presencia de estas sales estaba dada por una reestructuración de la envoltura celular y por un sistema reforzado de eflujo (Lv et al. 2017). Asimismo, concluyeron que estos mecanismos eran cepa-dependiente no pudiendo extrapolar los resultados para otras bacterias del mismo género (Lv et al. 2017). En otra área, la proteómica se ha evaluado como una herramienta más en el control de calidad de productos conteniendo bacterias probióticas inactivadas, para determinar, entre otras cosas, la similitud entre lotes (Klein et al. 2013).

En lo que respecta la interacción huésped-patógeno, esta técnica ha permitido estudiar tanto las estrategias moleculares de los patógenos para establecer una infección como la

respuesta establecida por el hospedador (Zhang, Chromy and McCutchen-Maloney 2005). Estas investigaciones tienen como finalidad encontrar nuevos blancos terapéuticos, por ejemplo, para la producción de vacunas, además de identificar biomarcadores de diferentes infecciones para una rápida detección (Zhang, Chromy and McCutchen-Maloney 2005).

El uso de la proteómica ha permitido importantes avances en el problema que significa, a nivel global, la resistencia a antibioticos. El estudio de los cambios de la fisiología bacteriana frente al estrés producido por estos medicamentos mediante técnicas de proteómica, ha permitido generar bases de datos de diversas proteínas que se encuentran involucradas en los mecanismos de respuesta a estos fármacos (Lima *et al.* 2013). Estos hallazgos fueron claves para desarrollar e investigar nuevas moléculas que funcionen como antibióticos (Lima *et al.* 2013). Las limitaciones actuales de esta técnica se centran principalmente en la identificación de diversas modificaciones post-traduccionales que pueden generar cambios en la funcionalidad de proteínas (Tsakou *et al.* 2020).

Es importante destacar que los estudios de proteómica con bacterias y medicamentos se han centrado en antibióticos por su relevancia clínica como se mencionó anteriormente y al momento de la redacción de este trabajo, no se han encontrado antecedentes de investigaciones en el campo de los anticoagulantes orales.

En los capítulos precedentes se han discutido los efectos de las cepas CIDCA 5310, CIDCA 5317 y ATCC 314 sobre el acenocumarol y, para ahondar en el conocimiento de los mecanismos que llevan a la modificación de la droga. Es objetivo del presente capítulo analizar la expresión de proteínas de las cepas en condiciones de cultivo *in vitro* en presencia del anticoagulante. Esto permite contribuir a esclarecer el proceso a nivel molecular, además de dar un panorama global de cómo funciona la fisiología bacteriana en presencia del anticoagulante e hipotetizar sobre las posibles consecuencias de estos cambios en los efectos del anticoagulante.

2. Materiales y Métodos

Se partió de cultivos de 24 h a 37 °C en MRS en anaerobiosis de las cepas *B. bifidum* CIDCA 5310, *B. adolescentis* CIDCA 5317 y *L. acidophillus* ATCC 314 a los que se les agregó 0,16 mg/ml de AC. Luego de la incubación, los cultivos fueron centrifugados 5 min a 3550 g y lavados 3 veces con PBS. Se suspendió el pellet en 2,8 ml de PBS con 500 µl de inhibidor de proteasa 7X "C0omplete Tablets, Mini, EDTA-free, EASYpack" (Roche). La preparación del stock fue la misma que se detalla en el Capítulo 2 en la sección Materiales y Métodos. Las muestras se sonicaron durante 10 min. en el homogeneizador ultrasónico Sonic Ruptor 400, en frío, a 0 °C. Al finalizar la sonicación, se centrifugaron 5 min a 3550 g y el sobrenadante fue conservado a -20 °C para posterior cuantificación de proteínas por el método de Bradford y realización de la electroforésis en gel. Bacterias cultivadas en medio sin AC fueron procesadas de la misma forma como referencia para las comparaciones.

2.1 Medida de proteínas totales por método de Bradford

2.1.1 Preparación del reactivo

Coomasie Brilliant Blue G-250 10 mg de disueltos en 5 ml de alcohol.

Ácido fosfórico 85% 10 ml Agua destilada csp 100 ml

Filtrar con papel de filtro

Luego de la filtración agregar 5 ml de hidróxido de sodio 1 M.

2.1.2 Curva de calibración

Se realizó con seroalbúmina utilizando 5 diluciones de una solución stock de 1 mg/ml de tal manera de cubrir el rango 0,1-1 mg/ml.

2.1.3 Procedimiento

Se utilizaron 200 μ l de reactivo Bradford por fosa en placa de 96 pocillos y se adicionaron 20 μ l de muestra (dilución 1/10). Tanto las muestras como los patrones de la curva se agregaron por duplicado. Se incubó a temperatura ambiente y al abrigo de la luz por 15 min..

Se leyó la absorbancia a 590 nm en un espectrofotómetro Synergy HT-SIAFRT, Biotek (Vermont, EEUU).

Se calculó la concentración de proteínas de las muestras utilizando la ecuación de la recta de la curva de calibración. Finalmente se realizó el cálculo de los volúmenes necesarios de

cada muestra para poder alcanzar una cantidad final de proteínas de 30 μg a sembrar en el gel.

2.2 Preparación de buffers y soluciones para SDS-PAGE

Buffer de muestra:

- Buffer apilador 4 ml
- SDS 0,16 gr
- Glicerol 4 ml
- Beta mercaptoetanol 5 %
- Azul de bromofenol csp

Buffer de corrida 5X:

En 1 l de agua destilada

- Glicina 72 gr
- Tris base 15 gr
- SDS 5 gr
- pH 8,3

Buffer gel separador 4X:

En 150 ml de agua destilada

- Tris base 27,2 gr
- SDS 0,6 gr
- TEMED 0,6 ml
- pH 8,8

Buffer gel apilador (stacking) 4X:

En 50 ml de agua destilada

- Tris base 3,0 gr
- SDS 0,2 gr
- TEMED 0,2 ml
- pH 6,8

Solución de acrilamida/bis acrilamida 50 %:

En 100 ml de agua destilada

- Acrilamida 48,7 gr
- Bisacrilamida 1,3 gr

2.3 Preparación de geles de poliacrilamida

Tabla 4.1 Composición de los geles de poliacrilamida

Solución	Gel separador (12 %)	Gel de apilamiento (4 %)
Acrilamida/BIS (50 %)	2.2 ml	330 μΙ
Tris/HCl 1M, pH 8.8	3.13 ml	-
(buffer separador)		
SDS 10%	8.3 μΙ	125 μΙ
Tris/HCl 0.375 M, pH 6.8	-	1.4 ml
(buffer apilador)		
H_2O	2.96 ml	2.1 ml
TEMED	2 μΙ	1.7 μΙ
Persulfato de amonio (100 mg/ml)	210 μΙ	330 μΙ

2.4 Electroforesis y tinción de geles

Para la realización de la electroforesis, se mezclaron volúmenes iguales de muestra y buffer de muestra y se calentó a 70 °C por 5 min. Se sembró en cada calle el volumen calculado necesario para obtener 30 μ g de proteína total.

La separación fue llevada a cabo a voltaje constante de 100 mV, midiéndose en esas condiciones un amperaje de 70 mA. La duración fue de aproximadamente 2 h.

2.5 Revelado

Para el revelado de los geles se utilizaron tres soluciones que se listan a continuación.

Solución 1

En 100 ml

- Etanol 30 ml
- H₃PO₄ 2 ml
- H₂0 destilada 68 ml

El gel permaneció en esta solución por 30 minutos

Solución 2

En 100 ml

- H₃PO₄ 2 ml
- H₂0 destilada 98 ml

Luego de dejar el gel 20 minutos en esta solución, se lavó con H₂0 destilada y se repitió la incubación en esta solución

Solución 3

En 50 ml

- $(NH_4)_2S_2O_8$ 7,5 gr
- H₃PO₄ 3,5 ml
- Etanol 9 ml
- H₂0 hasta volumen

El gel se incubó durante 30 minutos en esta solución y luego se agregó 0,5 ml de Coomassie Blue G.

En estas condiciones el gel permaneció durante 24 h, luego de las cuales se procedió a lavar con agua hasta la visualización de las bandas.

2.6 Preparación de muestras para la realización de la proteómica

Una vez revelados y corroborados los geles en cuanto a la homogeneidad en la intensidad de las bandas, se volvió a realizar una electroforesis pero en este caso hasta que las muestras ingresasen 1 cm al gel separador. En ese momento, se concluyó la electroforesis y se realizó una tinción con Coomassie Blue G-250 coloidal, según el protocolo del CEQUIBIEM (UBA), que se detalla más adelante. Luego, el gel fue cortado en cuadrados de 1 cm x 1 cm que fueron almacenados a 4 °C hasta el día del procesamiento.

2.6.1 Tinción con Coomassie Blue G-250 coloidal

Las proteínas fueron fijadas dejando el gel en solución fijadora 3 h. Luego se lavó 3 veces durante 30 min con H_2O destilada y se agregó la solución de tinción en la que el gel permaneció en agitación durante 1 h.

Finalmente se agregaron 0,5 g/L Coomassie Blue G-250 en polvo al gel en la solución de tinción. En estas condiciones la solución no presenta color azul, dado su carácter coloidal. Se dejó en agitación suave 1-2 días, tapando el recipiente para evitar la evaporación y contaminación.

Luego del tiempo de agitación el gel se lavó con H₂0 destilada y se cortaron las bandas obtenidas.

Solución Fijadora

- Etanol 30 % (v/v)
- $H_3PO_4 2 \% (v/v)$

Solución de tinción

- Metanol 18 % (v/v)
- (NH4)₂SO₄ 17 % (v/v)
- H₃PO₄ 2 % (v/v)

2.7 Protocolo del Servicio de Espectrometría de Masas, CEQUIBIEM, Universidad de Buenos Aires.

2.7.1 Procedimiento de tratamiento de las muestras

Las muestras fueron reducidas con ditiotreitol, DTT, 20 mM durante 45 min a 56 °C y alquiladas con Iodoacetamida 50 mM durante 45 min en oscuridad. Luego se digirió con tripsina (corta el enlace peptídico de Arg y Lys del lado c-terminal) durante 16 h. Se realizó la extracción de los péptidos con acetonitrilo.

Las muestras fueron liofilizadas (Speed Vac) y vueltas a suspender con 30 μ l de ácido trifluoroacético 0,1 %.

Se realizó un desalado utilizando puntas de pipetas adsortivas zip Tip C18 (Merck, Darmstadt, Alemania).

Se analizó por nanoHPLC acoplado a un espectrómetro de masa con tecnología Orbitrap, lo que permite una separación de los péptidos obtenidos por digestión tríptica de la muestra y una posterior identificación de los mismos. La ionización de las muestras se realizó por electrospray.

2.7.2 Configuración del equipo

Cromatógrafo

Se utilizó un cromatógrafo marca ThermoScientific (Massachusetts, EEUU), modelo EASYnLC 1000 apto para separar complejos proteicos con un alto grado de resolución utilizando una columna de fase reversa.

Columna

Marca: ThermoScientific

Modelo: EASY-Spray Accucore (P/N ES902)

Características: C18, 2 μ m, 100 A, 75 μ m x 250 mm

Temperatura: 35 °C

Gradiente

Se utilizó un gradiente con dos soluciones:

- Solución A: Agua con 0,1 % (v/v) de ácido fórmico

- Solución B: Acetonitrilo con 0,1 % (v/v) de ácido fórmico

Todos los solventes y reactivos utilizados presentan calidad LC-MS.

Tiempo (min:seg)	Duración (min:seg)	Flujo (nl/min)	В%
00:00	00:00	200	5
05:00	05:00	200	5
105:00	100:00	200	35
110:00	05:00	200	95
120:00	10:00	200	95

Volumen de inyección: 4µl

Ionizador

Se utilizó un ionizador por Electro Spray marca ThermoScientific, modelo EASY-SPRAY. Voltaje del Spray: Entre 1,5 - 3,5 kV

Espectrómetro de masa

Se utilizó un espectrómetro marca Thermo Scientific, modelo Q-Exactive. El equipo cuenta con una celda de HCD (*High Collision Dissociation*) y un analizador Orbitrap. La configuración del equipo permite que la identificación de los péptidos se realice al mismo tiempo que los mismos se separan por cromatografía, obteniendo *Full MS* y MS/MS. Se

utilizó un método que realiza la mayor cantidad de ciclos de medición por unidad de tiempo. En cada ciclo el equipo realiza un *Full* MS y luego hace MS/MS a los 12 picos de mejor relación señal/ruido en ese ciclo, con un rango de exclusión dinámico para disminuir el número de veces que un mismo péptido es fragmentado a lo largo de su elución del cromatograma.

Resolución *Full* MS: 70.000 Resolución MSMS: 17.500 Rango m/z *Full* MS: 400 - 2000 AGC Target *Full* MS: 1x10⁶ AGC Target MSMS: 5x10⁵

Polaridad: Positiva

2.7.3 Análisis de Datos

Los espectros obtenidos se analizaron con el programa *Proteome Discoverer* (Thermo Scientific versión 2.2) utilizando la base de datos correspondiente al estudio en cuestión. En este motor de búsqueda el usuario debe seleccionar la base de datos y ciertas características que se vinculan con la forma en que fue tratada la muestra. En base a esta información y a los datos crudos obtenidos del espectrómetro de masa, el programa desarrolla un informe donde indica que proteínas fueron identificadas y los péptidos que utilizó para esta identificación. El programa asigna un nivel de confianza a estos péptidos (*High/Medium/Low*) y el usuario decide con cual nivel de confianza trabajar, siendo siempre preferible utilizar sólo los péptidos de nivel *High*.

Los criterios de búsqueda fueron establecidos para cada cepa. En el caso de la cepa CIDCA 5310 se utilizó el proteoma de referencia de *Bifidobacterium bifidum* NCIMB 41171 UP000002776, para el caso de la cepa CIDCA 5317 el de *Bifidobacterium adolescentis* JCM 15918 y para la cepa ATCC 314 el de *Lactobacillus acidophilus* ATCC 700396.

Se establecieron los siguientes criterios adicionales en base al tratamiento de las muestras.

Enzima: tripsina *Miscleavage*: 2

Tolerancia de masa para precursor: 10 ppm Tolerancia de masa para fragmento: 0,05 Da

Modificaciones Dinámicas

Oxidación (M)

Modificaciones estáticas

Carbamidometilación (C)

Nivel de confianza de los péptidos: High

Mínima cantidad de péptidos diferentes identificado por proteína: 2

Para cada cepa, los resultados se obtuvieron en dos etapas. En la primera etapa se realizó la búsqueda individual de cada muestra y, en la segunda etapa, se elaboró un *Multiconsensus* (MC) en el cual se agrupan todas las búsquedas para generar la planilla MC/LFQ (del inglés, *Label Free Quantification*), donde quedan consolidados los datos en una única tabla.

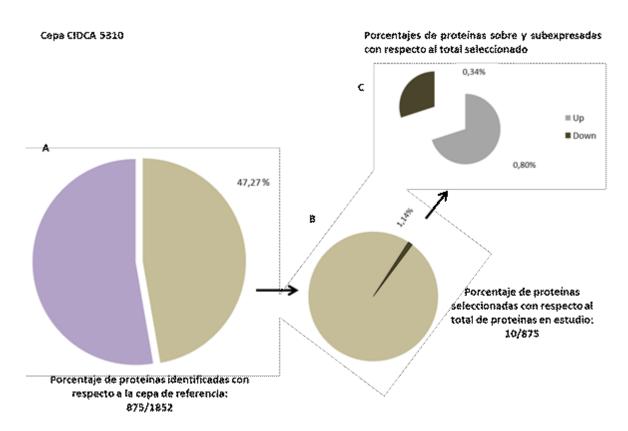
En la segunda etapa la cantidad de proteínas aumenta debido a la utilización de la función *Feature Mapper*. Esta función compara los todos los espectros obtenidos, y esto genera cambios en las proteínas que se muestran en la tabla MC/LFQ con respecto a lo que había en las individuales, resultando en un aumento en la cantidad de proteínas identificadas. Esto se debe a diversas acciones que realiza el software:

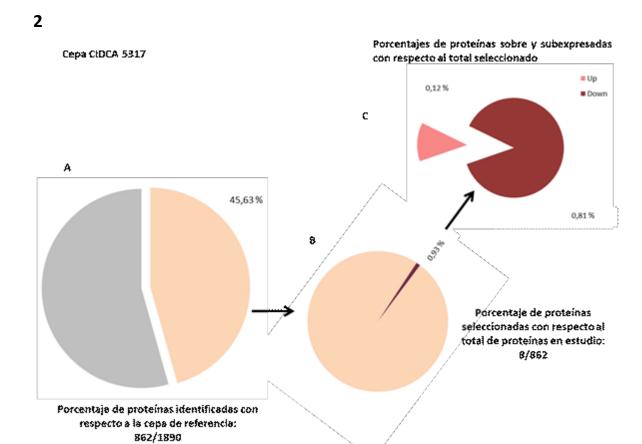
- Si en la búsqueda individual se detecta un solo péptido de alta confianza de una proteína, esta no aparece como *hit* en la lista porque no cumple con el criterio impuesto de dos péptidos por proteína. Sin embargo, si en al menos otra muestra, esa proteína cumple con los criterios de búsqueda, al realizar el *Multiconsensus* esa proteína también aparecerá como *hit* en la muestra donde antes no lo estaba y tendrá el valor correspondiente a la muestra individual en la columna PSMs (del inglés, *peptide spectral match*).
- Si en una muestra un pico parental de un posible péptido no es identificado porque la evidencia MS/MS no es suficiente para que tenga alta confianza, pero en otra muestra ese péptido sí es identificado con alta confianza y asignado a su proteína, entonces el programa asume que ese parental sin identidad corresponde al péptido identificado en otra muestra y le asigna una abundancia, en base al área de ese parental. La abundancia de este péptido luego es asignada a la proteína correspondiente, por lo tanto, si esta proteína antes no estaba identificada en esas muestras de forma individual, en el *Multiconsensus* si lo estará. La diferencia con el punto anterior es que en este caso la columna PSMs no tendrá valores ya que el péptido en esa muestra no está identificado con alta confianza. El *Feature Mapper*, además de basarse en los m/z, también realiza un alineamiento según los tiempos de retención utilizando una ventana de 10 min.

3. Análisis

Los proteomas utilizados para comparar las muestras fueron seleccionados utilizando la base de datos UniProt.

Los gráficos y análisis se realizaron utilizando el Software Perseus 1.6.6.0 (Max Planck Institute of Biochemistry, Alemania). El análisis se realizó mediante un Volcano Plot y utilizando un test de Student considerándose significativas para el estudio aquellas proteínas con un p < 0,05 y un fold change $\geq \pm 2$.


Las proteínas *up* y *down* reguladas se identificaron y caracterizaron utilizando, también, la base de datos de UniProt mediante *Gene Ontology*.


Por último los mapas de interacciones entre las proteínas identificadas fueron realizados utilizando en conjunto Cytoscape (versión 3.10.1, Institute for Systems Biology, Seattle, EEUU) y STRING (Szklarczyk *et al.* 2015). Para todos los análisis se utilizó un score de confianza de 0,4.

4. Resultados

Teniendo en cuenta los proteomas de referencia elegidos para cada cepa (extraídos de UniProt), en una primera instancia para comenzar con un análisis general y descriptivo de los datos, se evaluó qué porcentaje de ese proteoma se logró identificar en las cepas CIDCA 5310, CIDCA 5317 y ATCC 314 (Figura 4.1.A). Luego, se analizó con respecto al total de proteínas identificadas, cuales modificaron su expresión, tanto si aumentaron como si disminuyeron (Figura 4.1.B). Por último, se desglosó de ese porcentaje de proteínas que modificaban su expresión cuáles se encontraban subexpresadas y cuáles sobreexpresadas (Figura 4.1.C).

1

3

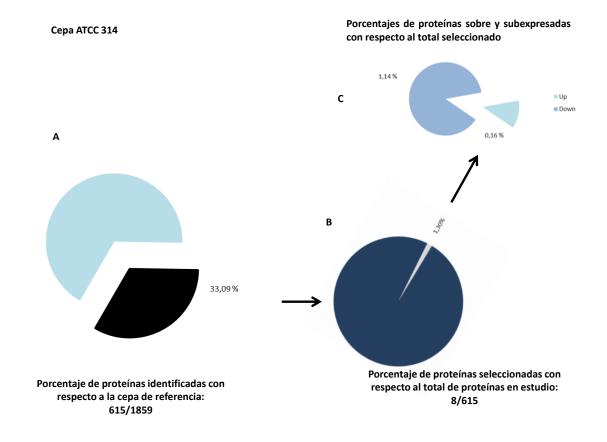


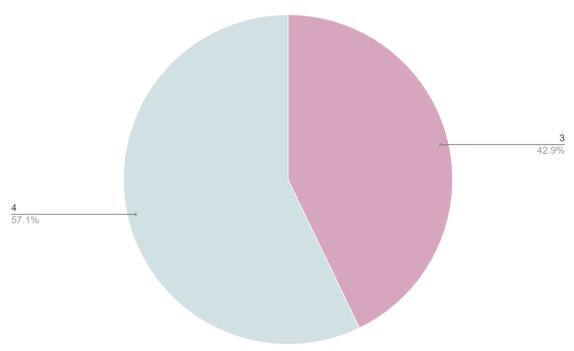
Figura 4.1. Cálculo de porcentajes de proteínas para las cepas CIDCA 5310 (1), CIDCA 5317 (2) y ATCC 314 (3): Proteínas identificadas con respecto a los proteónas de referencia utilizados (A), proteínas seleccionadas con respecto a las proteínas totales identificadas (B) y proteínas sobrexpresadas (Up) y subexpresadas (Down) en cada caso (C).

De esta primera exploración general de los datos podemos concluir que para las bifidobacterias se logró identificar un mayor porcentaje de proteínas con respecto al proteoma de referencia, siendo éste aproximadamente un 45 % en ambas cepas (Figura 4.1.1 y 4.1.2). En cambio, para los lactobacilos, la cantidad de proteínas totales identificadas, representa un 33,09 % del genoma de referencia (Figura 4.1.3). Cabe destacar que todos los proteomas de referencia seleccionados presentaban la característica "Standard", siendo éste el nivel más alto de clasificación en cuanto a calidad

para la base de datos utilizada. De todos modos, al analizar la cantidad de proteínas que fueron capaces de modificar su expresión en presencia de AC, se observa que, en los tres casos el porcentaje es cercano al 1 % (Figura 4.1.B). Más aún, solamente en el caso de la cepa CIDCA 5310 la cantidad de proteínas sobreexpresadas fue mayor a las subexpresadas (Figura 4.1.1.C).

Luego, se continuó con un análisis cualitativo de los datos, diviendo a las proteínas seleccionadas para el análisis (tanto sub como sobreepxresadas) según su valor PE, por sus siglas en inglés *Protein Existence*, como se observa en la figura 4.2.

La escala de valores y su significado se lista a continuación:


PE 1: Evidencia experimental a nivel proteico

PE 2: Evidencia experimental a nivel del ARNm

PE 3: Proteína inferida por homología

PE 4: Proteína predicha

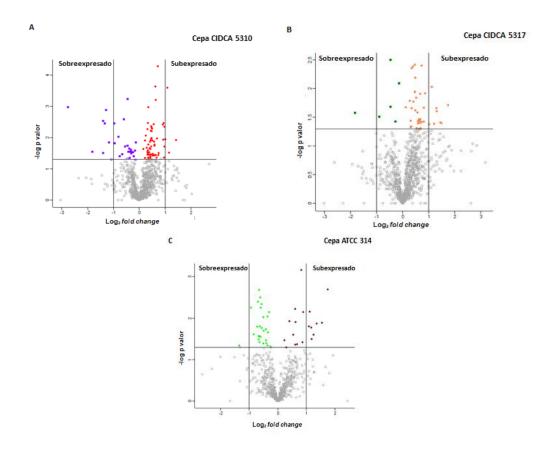

PE 5: Proteína incierta

Figura 4.2. Distribución de los valores PE obtenidos para todas las proteínas seleccionadas de las tres cepas en estudio. El color violeta representa corresponde a proteínas inferidas por homología y el color celeste proteínas predichas.

Dentro de las 26 proteínas estudiadas, tanto sub como sobreexpresadas, se encontró que el 42,9 % de estas fueron inferidas por homología y el 57,1 % correspondían a proteínas predichas. Dado que el proteoma de las cepas no se encuentra aún estudiado, y no será idéntico al de las cepas de referencia utilizadas, no se encuentra evidencia experimental que permita obtener proteínas de los grupos 1 y 2. Por otro lado, no necesariamente todas las proteínas de un proteoma de referencia se encontrarán aisladas y caracterizadas por lo que deberán predecirse en base a su secuencia y estructura.

Luego, como se mencionó en la sección de Materiales y Métodos de este capítulo, las muestras fueron analizadas mediante un Volcano Plot, que permitió diferenciar e identificar a las proteínas sub y sobreexpresadas. En la figura 4.3 podemos ver los gráficos obtenidos para las tres cepas. Cabe aclarar que el cuadrante superior derecho de la imagen determina las proteínas sobreexpresadas en la condición control con respecto a la condición con AC y el cuadrante superior izquierdo a las proteínas subexpresadas en la condición control con respecto a la condición con AC. Entonces, en este estudio las proteínas sobreexpresadas en la condición con AC deben buscarse a la izquierda del gráfico mientras que las subexpresadas con la droga a la derecha.

Figura 4.3. Volcano plot de las cepas CIDCA 5310 (A), CIDCA 5317 (B) y ATCC 314 (C) donde se visualizan las proteínas seleccionadas sobreexpresadas en el cuadrante superior izquierdo y las subexpresadas en el cuadrante superior derecho, en la condición de cultivo con acenocumarol. La línea horizontal a lo largo del eje Y representa el valor del –log 0,05 y las líneas verticales en el eje X el log₂ del fo*ld change* tanto positivo, +1, como negativo, -1.

Si se observan las tres figuras se destaca que, para la cepa CIDCA 5310, la mayor cantidad de proteínas se encuentran sobreexpresadas en la condición con AC y muy pocas subexpresadas. Este comportamiento es inverso para las cepas CIDCA 5317 y ATCC 314, donde, según los parámetros de análisis utilizados, se halló sólo una proteína sobreexpresada en las muestras donde se encontraba la droga (Figura 4.3). El hecho de que se hayan logrado identificar pocas proteínas en los tres casos se encuentra vinculado con lo exigente del análisis realizado en cuanto al *fold change*, que en este caso fue ± 2. Este limite asegura que las proteínas seleccionadas no formen parte del ruido inherente a la técnica.

A continuación para poder identificar a las proteínas seleccionadas se recurrió a la base de datos UniProt donde con el código correspondiente pudimos acceder a la descripción de

las mismas. En las tablas que se muestran a continuación, se listan los datos obtenidos para las tres cepas (Tabla 4.2).

Tabla 4.2. Proteínas seleccionadas sobre- y sub- expresadas luego de la incubación con AC para las tres cepas. Se encuentran representados los códigos obtenidos de UniProt y los nombres de las proteínas

Proteínas identificadas cepa CIDCA 5310	
Proteinas sobreexpresadas	
Código UniProt	<u>Descripción</u>
E4V849/	DNA 3'-5' helicase
E4V885	ABC transporter, ATP-binding
E4V886	ABC transporter, ATP-binding protein
E4V8G7	SET and RING associated domain-containing protein
E4VC03	Pyrrolidone-carboxylate peptidase
E4VC27	Cyclopropane-fatty-acyl-phospholipid synthase
E4V884	Transcriptional regulator, MarR family
Proteínas subexpresadas	
E4VBE0	ATP synthase subunit b
E4V7F5	Raf-like protein
E4VB46	Uncharacterized protein

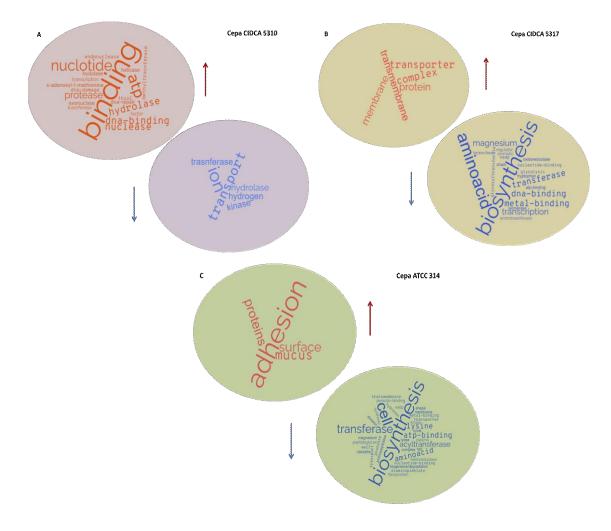

Proteínas identificadas cepa CIDCA 5317	
Proteínas sobreexpresadas	
Código UniProt	<u>Descripción</u>
A0A087DMA9	Peptides ABC transporter substrate-binding protein
<u>Proteínas subexpresadas</u>	
A0A087DL57	Ketol-acid reductoisomerase (NADP(+))
A0A087DSN9	PhoH-like protein
A0A087DQD3	Anthranilate phosphoribosyltransferase
A0A087DRI6	Aminotransferase
A0A087DLF2	Phosphoglycerate mutase
A0A087DLQ7	Response regulator of two-component system
A0A087DHG2	Ribose operon repressor RbsR

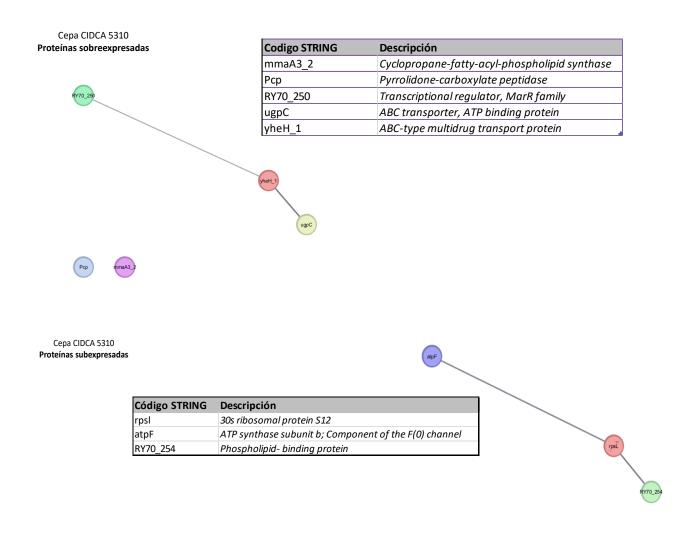
Tabla 4.2 (Continuación).

Proteínas identificadas cepa ATCC 314	
Proteínas sobre expresadas	
Código UniProt	<u>Descripción</u>
Q5FJA7	Mucus binding protein Mub
Proteínas subexpresadas	
Q5FKK1	Citrate lyase subunit beta
Q5FN03	Putative alkylphosphonate ABC transporter
Q5FIZ6	Penicillin-binding protein
Q5FKR3	Aspartokinase
Q5FL42	UDP-N-acetylenolpyruvoylglucosamine reductase
Q5FKR1	2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-acetyltransferase
Q5FKB8	Penicillin-binding protein
Q5FKK4	Putative hydrolase or acyltransferase

Con el objetivo de estructurar el análisis de los datos obtenidos se utilizó la herramienta bioinformática de Gene Ontology (GO). Para cada producto génico, GO asocia diferentes términos relacionados a la función molecular, el proceso biológico y la localización subcelular dependiendo de la información con la que se cuente en cada caso. Cada proteína puede tener más de un término GO, los cuales son exactos y no tienen sinónimos.

Una vez anotados todos los términos para las proteínas seleccionadas de las tres cepas, se volcaron los datos obtenidos en un mapa de palabras. En este sentido se buscó resaltar las palabras más representativas biológicamente para cada microorganismo tanto para las proteínas sobre como las subexpresadas, como se observa en la figura 4.4.

Figura 4.4. Mapas de palabras generados con los términos de Gene Ontology obtenidos para las proteínas identificadas sobreexpresadas (↑) y subexpresadas (↓) luego de la incubación con AC para las cepas CIDCA 5310 (A), CIDCA 5317 (B) y ATCC 314 (C).


Dentro de los términos que más se destacan para la cepa CIDCA 5310, en cuanto a las proteínas que se encuentran sobreexpresadas luego de la incubación con AC, está la palabra binding o unión y, más específicamente, unión a ATP/nucleótidos y a ADN (Figura 4.4). Estos términos se corresponden con las proteínas identificadas: ADN helicasa, transportadores tipo ABC y el regulador transcripcional, que se pueden apreciar en la tabla 4.2. Además, no es menor mencionar la presencia de hidrolasas y proteasas, términos que se encuentran asociados a la pirrolidona-carboxilato peptidasa y a la proteína asociada a los dominios SET y RING (Tabla 4.2). En cuanto a las proteínas subexpresadas para la cepa CIDCA 5310, los términos más representativos son ión y transporte, correspondiéndose éstos a la subunidad B de la ATP sintasa, que para esta bacteria fermentativa podría estar asociada a la generación de gradientes de protones (Tabla 4.2).

Para la cepa CIDCA 5317 se identificó una sola proteína sobreexpresada que pertenece a los transportadores de péptidos tipo ABC, como se ve en la tabla 4.2. Esta proteína pertenece a la misma familia de transportadores que los identificados para la cepa CIDCA 5310. Con respecto a las proteínas que se encuentran subexpresadas el término que se destaca es el de biosíntesis, específicamente, de aminoácidos. Estas palabras se encuentran asociadas a las enzimas identificadas fosforibosiltransferasa y reductoisomerasa, que se listan también en la tabla 4.2.

Por último, para la cepa ATCC 314, se distinguió una sola proteína sobreexpresada, en este caso de unión a mucus (Tabla 4.2). El término adhesión que aparece en la nube de palabras de la figura 4.4 representa justamente el proceso asociado a dicha proteína. Por otro lado, para las proteínas subexpresadas se encontró como principal, el mismo término que para la cepa CIDCA 5317, biosíntesis. Esta palabra se correspondería con las proteínas N-acetiltransferasa y aspartoquinasa listadas en la tabla 4.2 y, si bien no se aprecia en el mapa de la figura 4.4, el proceso de biosíntesis en el que participan es también de aminoácidos.

De esta manera se encontraron ciertos comportamientos similares entre las cepas, así como varios puntos de diferencia que sirven de base para la discusión de estos resultados.

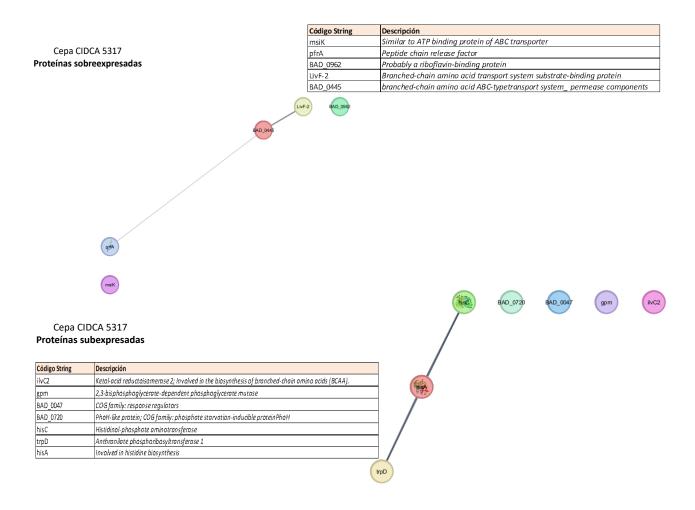

Con el objetivo de ahondar en nuestro análisis, se utilizó la base de datos STRING, que genera mapas de interacciones de proteínas, ya sea que estén unidas físicamente o que trabajen en conjunto, por ejemplo, en una misma ruta metabólica. En este sentido, se decidió graficar los mapas obtenidos para las proteínas sobre y subexpresadas para cada cepa con sus respectivos interactores (Figuras 4.5, 4.6 y 4.7). Cabe destacar que en este análisis se pueden presentar casos en los que la cantidad de proteínas ingresadas sea menor a los nodos representados. Esto sucede si hay proteínas redundantes o si no se encuentran en la base de datos para la especie buscada. Además, es importante mencionar que en este caso se pudieron estudiar los microorganismos a nivel de género y especie, sin poder discernir entre cepas como en el caso de la base de datos UniProt.

Figura 4.5. Mapas de interacciones generados para las proteínas sobre y subexpresadas en presencia de AC para la cepa CIDCA 5310. Se anexa junto a cada mapa una tabla con los códigos identificatorios y descripciones correspondientes.

Para el caso de la cepa CIDCA 5310, para las proteínas sobreexpresadas en presencia de la droga, se encontró una interacción entre el regulador transcripcional MarR y otra proteína indicada con el código yheH_1, que previamente no se había detectado, cuya descripción se corresponde con un transportador de multidrogas de la familia ABC. Más interesante aún, esta nueva proteína, a su vez, interactúa con un transportador de tipo ABC, indicado con el código ugpC (Figura 4.5). Tanto la enzima peptidasa como la fosolípido sintasa, no parecen interactuar con el resto ni entre sí (Figura 4.5).

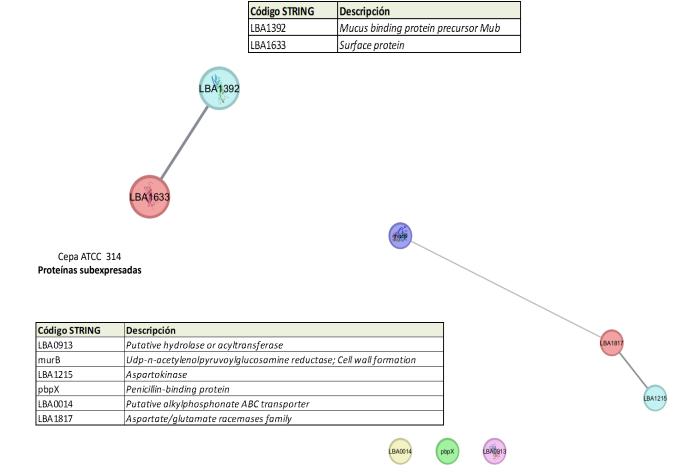

En el caso de las proteínas subexpresadas para esta cepa se evidencia que mediante la proteína indicada como rpsl, que corresponde a una proteína ribosomal previamente no detectada, interactúan la ATP sintasa y una proteína de unión a fosfolípidos, que tampoco se evidenciaba en el análisis anterior (Figura 4.5). Cabe mencionar que las proteínas tipo RAF que surgieron en el análisis anterior (Tabla 4.2), no arrojaron resultados en la base de datos de STRING para el microorganismo en estudio. Más aún, en bibliografía, esta proteína está descripta en plantas (Kuhn *et al.* 2024) pero no en bacterias, por lo que si bien en este caso debe tratarse de una proteína con características similares, no fue tenida en cuenta en la discusión de estos resultados.

Figura 4.6. Mapas de interacciones generados para las proteínas sobre y subexpresadas en presencia de AC para la cepa CIDCA 5317. Se anexa junto a cada mapa una tabla con los códigos identificatorios y descripciones correspondientes.

Continuando con la cepa CIDCA 5317, en el caso de las proteínas sobreexpresadas, se puede apreciar que surgen nuevas interacciones visualizadas en la figura 4.6. En este sentido, en el mapa se puede destacar la aparición de proteínas relacionadas a la biosíntesis de aminoácidos ramificados, indicadas con los códigos livF-2 y BAD_0445 (Figura 4.6). Además, se observan dos nodos que no se encuentran interactuando en el mapa, uno correspondiente a una proteína de transportadores tipo ABC (msiK) y una probable proteína de unión a rivoflavina (BAD_0962) (Figura 4.6). En el caso de las proteínas subexpresadas en presencia de AC, se observan interacciones entre tres nodos, que si se analiza la tabla, corresponden a proteínas involucradas en la síntesis de aminoácidos (hisC, trpD, hisA) (Figura 4.6). Cabe mencionar que también figura la proteína relacionada a la síntesis de aminoácidos ramificados, como se observara en el análisis inicial (Tabla 4.2), pero que no interactúa con otros nodos (Figura 4.6)

Cepa ATCC 314 Proteínas sobreexpresadas

Figura 4.7. Mapas de interacciones generados para las proteínas sobre y subexpresadas en presencia de AC para la cepa ATCC 314. Se anexa junto a cada mapa una tabla con los códigos identificatorios y descripciones correspondientes.

Por último, en el caso de la cepa ATCC 314, se observa que la proteína sobreexpresada, MUB, interactúa con una proteína de superficie, lo que parecería indicar una localización compartida en la membrana celular (Figura 4.7). Por otro lado, en el caso del mapa que ilustra las interacciones generadas para las proteínas subexpresdas, aparecen varios nodos (Figura 4.7). Se distingue la presencia de un racemasa, no descripta previamente, que vincula a su vez a dos proteínas, una aspartatoquinasa y una reductasa involucradas en la síntesis de pared, murB (Figura 4.7). Luego se pueden observar tres proteínas que no interactúan con el resto del mapa, la proteína de unión a penicilina, una hidrolasa y una proteína de la familia de los transportadores ABC (Figura 4.7). Estas tres proteínas fueron identificadas en el análisis inicial de las proteínas subexpresadas, estando la hidrolasa también vinculada con la síntesis de aminoácidos.

5. Discusión

El análisis del proteoma de las cepas bacterianas luego de la incubación con AC permite ahondar en el modelo de interacción propuesto bacteria/droga a la vez que contribuye a interpretar resultados de los capítulos precedentes.

Es importante remarcar que el análisis realizado para reconocer proteínas que modificaron su expresión en presencia de la droga se realizó de una manera muy exigente, lo que explica en parte la poca cantidad de proteínas identificadas. De todas maneras, el porcentaje de proteínas modificadas en todos los casos fue de alrededor del 1 %, lo que permitiría pensar que el AC no induce muchos cambios pero éstos pueden ser altamente relevantes en la bacteria.

Claramente de los datos obtenidos se puede concluir, en primera instancia, que no todas las bacterias responden igual en un mismo entorno, en este caso en presencia de AC, incluso si son del mismo género. Este perfil diferencial está en línea con los resultados de los capítulos previos donde se observan variaciones en las respuestas de las cepas. De todas maneras, esto no quita que haya ciertos patrones de expresión en común.

Varios autores han descripto mecanismos adaptativos tanto de *Bifidobacterium* como *Lactobacillus* frente a ambientes hostiles, como el del tracto gastrointestinal. El pH bajo y la presencia de ácidos biliares son los principales factores de estrés estudiados, si bien el estrés osmótico así como la influencia de altas temperaturas también han despertado interés, principalmente en la industria alimentaria para la formulación de productos probióticos (Sanchez *et al.* 2008; Hussain *et al.* 2013; Mazzeo *et al.* 2015). Los avances en el campo de la proteómica, en este sentido, han contribuido al conocimiento de las complejas respuestas adaptativas de los microorganismos frente a un amplio rango de factores de estrés (Hussain *et al.* 2013).

Al estudiar la respuesta establecida por las bifidobacterias frente a un bajo pH, se teorizó que la ATP sintasa era una proteína esencial en la tolerancia a estas condiciones (Sánchez et al. 2007; Sanchez et al. 2008; Schöpping, Zeidan and Johan 2022). Esta enzima cumple un rol clave en el transporte de protones y consecuente mantenimiento del pH intracelular. Más aún, la expresión de la misma es inducible por pH como se estudió en B. longum (Sanchez et al. 2008). Para esta misma bacteria, además, se planteó que frente a un bajo pH se optimiza la ruta metabólica característica del género Bifidobacterium conocida como bidif shunt, vía utilizada para la obtención de ATP (Sánchez et al. 2007).

En el caso del estrés producido por la presencia de bilis, la respuesta de los microorganismos es amplia en cuanto a la cantidad de enzimas y proteínas que se ponen en juego para hacerle frente. En este sentido, la bibliografía describe la sobreexpresión de proteínas asociadas al metabolismo de carbohidratos, si bien se observó que, para dos especies de bifidobacterias, B. *animalis* subsp *lactis* y *B. longum*, las vías catabólicas

elegidas eran diferentes (Sánchez *et al.* 2005; Sanchez *et al.* 2008). Esta última observación refuerza el hecho de que las respuestas varían entre bacterias frente al mismo condicionamiento. Por último, cabe agregar que la presencia de este estresor pone en juego mecanismos de eflujo activos como se describió anteriomente en este capítulo, además de aumentar la expresión de proteínas que se encuentran relacionadas con el mantenimiento de la estabilidad e integridad del material genético (Ruiz, Margolles and Sánchez 2013; Schöpping, Zeidan and Johan 2022).

Los lactobacilos también presentan una gran capacidad adaptativa frente a diferentes escenarios adversos. En línea con lo planteado anteriormente, la disminución del pH del medio genera que estas bacterias expresen proteínas de shock ácido, cuya localización es tanto intracelular como de membrana (Hussain et al. 2013). Más aún, otros autores detectaron que los cambios que ocurrían en las proteínas de membrana variaban entre especies (Nezhad, Knight and Britz 2012). Entre ellas, se encontraron antígenos de superficie y proteínas que unen fibronectina (Nezhad, Knight and Britz 2012). Alcántara y colaboradores estudiaron el proteoma y transcriptoma de una cepa de L. casei encontrando que los cambios inducidos por la presencia de bilis se asociaban principalmente a proteínas de estrés como las chaperonas, proteínas involucradas en la biosíntesis de la pared celular y ácidos grasos, así como aquellas pertenecientes al metabolismo de carbohidratos y transporte de péptidos (Alcántara and Zúñiga 2012). Más aún, resulta interesante que el estudio del proteoma de una cepa de L. acidophilus en presencia del polifenol rutina, reveló que este compuesto era capaz de inducir cambios en proteínas involucradas en el metabolismo de carbohidratos y aminoácidos así como un incremento en la expresión de aquellas proteínas implicadas en la síntesis y plegado de proteínas (Mazzeo et al. 2015).

En conjunto, estas evidencias dan cuenta de la gran plasticidad metabólica de las bacterias para adaptarse a diversos ambientes. La presencia de moléculas de fármacos no es la excepción, si bien como se mencionó en la introducción de este capítulo, la mayoría de los estudios disponibles sobre este tópico se centran en bacterias patógenas y antimicrobianos, lo cual provee las claves para interpretar de manera integral los resultados del presente trabajo de tesis. En este sentido, dentro de las estrategias moleculares que permiten que los microorganismos generen resistencia a los antibióticos se encuentran la sobreexpresión de transportadores de eflujo y de enzimas degradativas (como β-lactamasas), así como la regulación de proteínas de unión como las PBP (por sus siglas en inglés, Penicilin Binding Proteins) (Tsakou et al. 2020). La sobreexpresión de proteínas de eflujo que permiten eliminar a los fármacos del interior celular, es un mecanismo que se ha descripto para antibióticos pertenecientes al grupo de los βlactámicos, macrólidos y aminoglucósidos (Tsakou et al. 2020). Los transportadores de tipo ABC, son un tipo de bomba de eflujo que ya se encuentran caracterizados en una amplia gama de bacterias como E. coli, B. subtilis y L. lactis entre otras (Orelle, Mathieu and Jault 2019). Sin embargo también pueden funcionar en la captación, de forma activa,

de sustancias como vitaminas e iones, demostrando la amplia variedad de sustratos que pueden ser transportados (Davidson and Chen 2004). Recientemente Zafar y colaboradores han estudiado el transportoma de nueve cepas de bifidobacterias con características probióticas (Zafar and Saier 2022). Este análisis concluyó que el 12.3–19.3 % de las proteínas totales de estas bacterias correspondían a transportadores, entre los que se encontraban los transportadores de tipo ABC, demostrando la gran capacidad de adaptación metabólica de estos microorganismos (Zafar and Saier 2022). Además, los trasportadores del tipo ABC correspondían a la mayor fracción de los transportadores identificados, lo que da idea de la relevancia de los mecanismos de eflujo e influjo desarrollados por las bifidobacterias (Zafar and Saier 2022). Cabe destacar que, dentro de estas proteínas, algunos tipos son capaces también de tomar carbohidratos y aminoácidos del medio extracelular, para ser utilizados como fuente de carbono y energía (Ejby *et al.* 2019; Zafar and Saier 2022).

Si se observan los resultados obtenidos para el caso de las tres cepas en presencia de acenocumarol se pueden detectar ciertas similitudes con respecto a lo previamente descripto.

Comenzando con las cepas de bifidobacterias, CIDCA 5310 y CIDCA 5317, en ambos casos se encuentra aumentada la expresión de transportadores de eflujo tipo ABC. Si bien se encuentran en bibliografía estudios que analizan la inducción de los genes que codifican para proteínas transportadoras en B. longum (mediante qPCR) en un medio conteniendo eritromicina, los resultados expuestos en este capítulo ponen de manifiesto, por primera vez, la capacidad de una droga anticoagulante de estimular la expresión de estos transportadores en bifidobacterias (Moodley, Reid and Abratt 2015). En este sentido, podría proponerse que las bacterias aumentan la capacidad de eliminar a la molécula de fármaco del interior celular. Más aún, para la cepa CIDCA 5310, en el mapa de palabras de la figura 4.3 otro de los términos que aparece representado como sobreexpresado corresponde a la actividad de enzimas hidrolíticas. Estas enzimas podrían estar actuando sobre el AC, como se postuló en los capítulos 1 y 2 de la presente tesis, generando diferentes metabolitos. Si se observa la figura obtenida del análisis de interacciones de las proteínas sobreexpresadas para la cepa CIDCA 5310 (Figura 4.5), el regulador transcripcional de la familia MarR interactúa con una proteína transportadora de multidrogas y con el transportador de la familia ABC. En conjunto, la cepa CIDCA 5310, además de sobreexpresar diversos transportadores, sobreexpresa uno de sus reguladores transcripcionales, lo que permite pensar que la eliminación de la droga del interior celular es uno de los mecanismos principales en la respuesta a la presencia del xenobiótico. Otra de las proteínas sobreexpresadas para esta cepa es la ciclopropano-acil graso-fosfolípido sintasa, cuya función es la síntesis de lípidos conteniendo ácidos grasos ciclopropano, que cumplen un rol en la protección de las bacterias frente a condiciones adversas como bajas temperaturas, acidez y la presencia de contaminantes (Ma, Pan and Wang 2019). Esta enzima juega un rol clave en la regulación de la fluidez de la membrana bacteriana frente

a factores de estrés (Fang et al. 2007), lo que resulta compatible con la presencia de un xenobiótico en el medio. Si ahondamos en el estudio de las interacciones de otra proteína sobreexpresada de la cepa CIDCA 5310, la proteína que contiene dominios asociados SET and RING, se puede destacar la aparición de una proteína chaperona, que como se mencionó, son proteínas clásicas de estrés (Apéndice figura S4.1). Esto se relaciona a su función en el correcto plegado de proteínas. Esta última observación guarda relación también con la sobreexpresión de la ADN helicasa, que se ha descripto como una proteína que participa en el mantenimiento de la estabilidad del ADN frente al estrés producido por la presencia de bilis (Schöpping, Zeidan and Johan 2022). La sobreexpresión de una peptidasa (Tabla 4.2), también se podría vincular con la respuesta al estrés, ya que este grupo de proteínas se ha descripto como clave en la regulación de la homeostasis proteica intracelular frente a condiciones de altas temperaturas (Schöpping, Zeidan and Johan 2022). Por último, cabe mencionar, que para esta cepa se encuentra subexpresada una subunidad de la ATP sintasa, que como ya se mencionó anteriormente, desempeña un rol clave en el transporte de protones a través de la membrana, poniendo de manifiesto que el AC podría estar induciendo cambios relacionados a este gradiente lo que podría infuir en el transporte de otras sustancias.

Además, en el caso de la cepa CIDCA 5317, si se observa el mapa generado para la sobreexpresión de proteínas, surgen nuevos nodos interactores relacionados principalmente con el transporte de aminoácidos ramificados (Figura 4.6). Esto resulta de gran importancia ya que, si se observan las proteínas subexpresadas, justamente figuran aquellas relacionadas con la biosíntesis de este mismo tipo de aminoácidos (Figura 4.6). La variación del metabolismo de aminoácidos ya ha sido descripta como uno de los mecanismos adaptativos en B. breve frente a condiciones de escasez de nutrientes, donde se observó que se encontraba aumentado el catabolismo de ciertos aminoácidos como fuentes alternativas de carbono y energía (Ortiz Camargo et al. 2023). También se encuentran estudios que describen la modificación de la síntesis de ciertos aminoácidos de bifidobacterias frente a altas temperaturas (Schöpping, Zeidan and Johan 2022). En este caso, entonces, es posible teorizar que los microorganismos enlentecen su metabolismo como una respuesta frente al estrés ocasionado por la presencia de AC en el medio intracelular, lo que impacta en la síntesis de aminoácidos. En cambio, las bacterias sintetizan proteínas capaces de captar estos nutrientes del medio extracelular. Este enlentecimiento, sin embargo, no impactaría en el crecimiento de las cepas, como ya se demostró en el capítulo 1.

Como se mencionó previamente, los lactobacilos, así como otras bacterias probióticas, también pueden sufrir modificaciones sustanciales en su metabolismo y su morfología cuando son sometidos a algún factor de estrés y nuestros hallazgos resultan compatibles con estudios previos en estas bacterias. Durante la incubación con AC, la cepa ATCC 314 sobreexpresa la proteína de adhesión a mucus MUB. Esta proteína se encuentra ampliamente estudiada para los lactobacilos tanto en composición como en estructura.

Resulta muy interesante por su función en la adhesión al epitelio intestinal humano mediante la unión a mucina y la consecuente exclusión de microorganismos patógenos, lo que le da en parte su característica probiótica a este género bacteriano (Singh et al. 2018). Esta capacidad de adhesión a células epiteliales se ha comprobado tanto in vitro como ex vivo por microscopía en biopsias de tejido (MacKenzie et al. 2009). Además de su función en la adhesión al epitelio, se encuentra descripto en varias especies de lactobacilos, que esta proteína tiene función inmunomodulatoria al poder unirse a otros ligandos, como inmunoglobulinas (MacKenzie et al. 2009; Muscariello, De Siena and Marasco 2020). Más aún, Ramiah y colaboradores han estudiado la expresión del gen mub en una cepa de Lactobacillus acidophilus en diferentes escenarios encontrando que su expresión se veía disminuida cuando se aumentaban los niveles de bilis y pancreatina en el medio, condición que llamaron "de estrés intestinal" (Ramiah, van Reenen and Dicks 2009).

Es interesante destacar que mediante un análisis de interacciones pormenorizado de la proteína MUB en el que se amplió el límite de proteínas mostradas, haciendo hincapié en sus respectivos dominios, se reveló que ésta se vinculaba con varias proteínas (Apéndice figura S4.2). La mayoría de éstas contenían dominios de unión a mucina (Apéndice figura S4.2). Más importante, si observamos la lista detallada en la tabla de la figura S4.2, se puede observar que las proteínas indicadas con los códigos LBA0574 y LBA0575, corresponden a transportadores de tipo ABC con función permeasa. De todas maneras, no hay que dejar de lado que para esta cepa en el caso de las proteínas subexpresadas se encuentra también un transportador ABC pero específico de alquilfosfonatos (Tabla 4.2), compuestos involucrados en el metabolismo de fósforo de los microorganismos. El uso de estos transportadores en la captación de fuentes de carbono y nitrógeno del medio externo para optimizar las rutas metabólicas en condiciones de estrés, ya se ha descripto para L. casei GCRL163 frente a altas temperaturas (Adu et al. 2018). En este sentido, retomando a las proteínas que interactúan con MUB, se podría deducir que la cepa ATTC 314 expresa proteínas que actúan en conjunto con transportadores que podrían estar involucrados en el transporte de la droga, reforzando la idea de que una de las respuestas en común al estrés ocasionado por el AC es inducir mecanismos que permitan la eliminación de la molécula del interior celular.

Estudios del proteoma de la cepa probiótica *Lactobacillus acidophilus* NCFM, han demostrado la capacidad de inducir la expresión de proteínas de adhesión mediante diversos estímulos. Dentro de estos podemos mencionar a los polifenoles, como el resveratrol y el ácido ferúlico, así como también a la rafinosa, azúcar utilizado como prebiótico (Celebioglu *et al.* 2016, 2018). Estos hallazgos explican parte de los mecanismos a través de los cuales estos compuestos ejercen su actividad benéfica sobre el organismo (Celebioglu *et al.* 2016). Nuestros resultados se encuentran en concordancia con estudios previos ya que demuestran la capacidad de esta droga anticoagulante de alterar la expresión de proteínas de adhesión en los lactobacilos, siendo los primeros datos encontrados con respecto a esta interacción. Si bien en los ensayos con células

eucarióticas discutidos en el capítulo 3 de esta tesis no parece que la adhesión de la cepa ATCC 314 condicionase el transporte o internalización de la droga, sí se observa que es la única bacteria capaz de aumenta los valores de TEER en las monocapas celulares. Esto está de acuerdo con reportes sobre el aumento de la función barrera en células intestinales asociado a la presencia de cepas probióticas (Mohebali *et al.* 2020; Yuan *et al.* 2020).

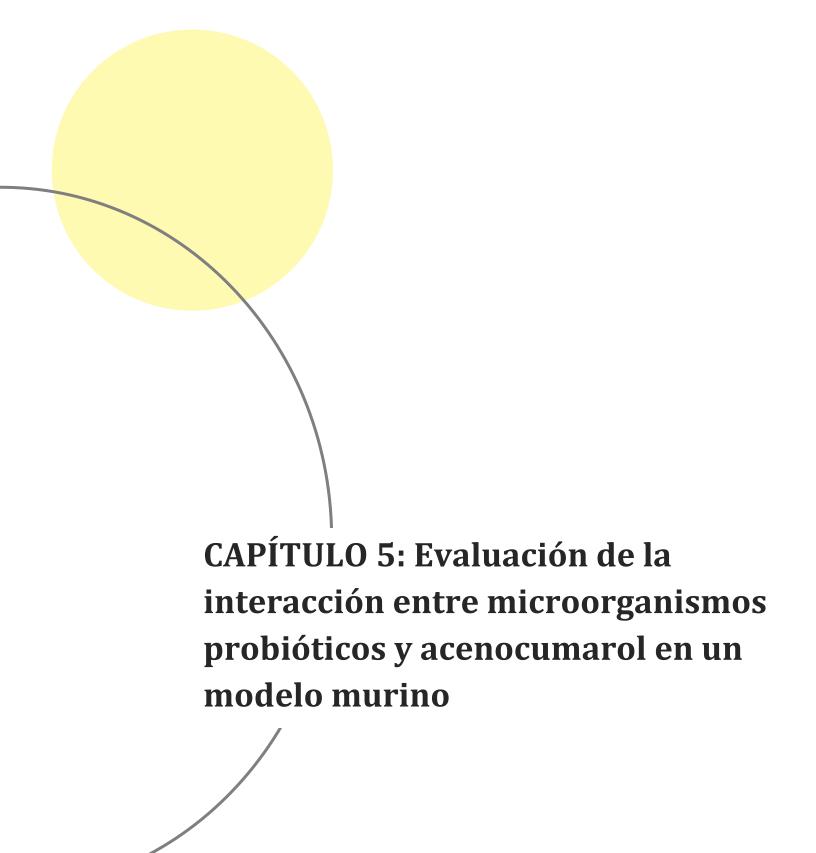
Con respecto a las proteínas que se encontraban subexpresadas para la cepa ATCC 314 en presencia de AC, se puede destacar la presencia de las proteínas de unión a penicilina, PBP, además de proteínas involucradas en la biosíntesis de aminoácidos. Las PBP son un grupo de proteínas que cumplen un rol en la síntesis de peptidoglicano de la pared celular y, además, son los blancos de los antibióticos β-lactámicos (Hattori *et al.* 2017). Como se mencionó en párrafos anteriores, la modulación de la afinidad de estas proteínas por las moléculas de antimicrobianos es uno de los mecanismos que generan resistencia en los microorganismos. Es importante destacar que, en el caso de los probióticos, la presencia de estas proteínas resulta clave para la superviviencia en ambientes hostiles, como el gastrointestinal por su rol en la síntesis de pared (De Montijo-Prieto *et al.* 2019). Más aún, la reductasa identificada como subexpresada para esta cepa (Tabla 4.2) también se asocia a la síntesis de pared celular ya que se encarga de la síntesis del ácido UDP-Nacetilmurámico (Naqvi *et al.* 2016). La subexpresión de estas proteínas, entonces, podría estar indicando que el AC genera cambios morfológicos en los lactobacilos, como parte de la respuesta adaptativa a la presencia de la droga.

En cuanto al otro grupo funcional de proteínas cuya expresión se encuentra disminuída, la citrato liasa, aspartoquinasa y la acetiltransferasa, todas participan en la biosíntesis de aminoácidos (Tabla 4.2). En este aspecto, como se mencionó para la cepa CIDCA 5317, la disminución en la síntesis de aminoácidos puede relacionarse con una respuesta al estrés inducida por la presencia del xenobiótico en el medio. La disminución de las vías metabólicas que requieren energía, como la síntesis de nucleótidos y aminoácidos, ha sido descripta para lactobacilos en respuesta a la exposición a altas temperaturas (Adu *et al.* 2018). Liu y colaboradores, además, reportaron que frente a un estrés inducido por bajas temperaturas, una cepa de *Lactobacillus plantarum* aislada de kéfir, disminuía la expresión de proteínas relacionadas a la síntesis de ácidos grasos, aminoácidos y carbohidratos, manteniéndose en un estado de supervivencia priorizando la conservación de energía (Liu *et al.* 2020). Esta adaptación es compatible con los resultados expuestos en el primer capítulo de este trabajo, ya que no se encontraron diferencias en el crecimiento de las cepas con y sin la droga.

Nuestros hallazgos muestran que las bifidobacterias, en presencia de AC, aumentan la expresión de proteínas compatibles con mecanismos de eliminación de la droga del interior celular. Por otro lado, los lactobacilos modifican las proteínas de superficie pudiendo esto influir en la capacidad de adhesión al epitelio intestinal y por consecuente

en la función barrera del mismo. Además, se comprobó que la proteína sobreexpresada MUB, presenta capacidad de interactuar con transportadores de tipo ABC, generando también, la posibilidad de que esta cepa elimine la droga del interior celular.

Por otro lado, tanto bifidobacterias como lactobacilos parecen mostrar una adaptación metabólica a la presencia del xenobiótico, para la optimización de las vías de obtención de carbono y energía, lo que se condice con los resultados expuestos en el primer capítulo de estas tesis, donde no se observan diferencias en el crecimiento de las cepas con acenocumarol.


Estos resultados manifiestan la gran variedad de respuestas que ponen en juego los microorganismos frente a la presencia de un xenobiótico y como pueden moldear su metabolismo para adaptarse a nuevos entornos. Nuestros estudios presentan por primera vez el complejo entramado de proteínas desplegado por las bacterias frente a la presencia del anticoagulante acenocumarol, e infieren que la interacción es bidireccional ya que no solamente se generan modificaciones en la droga por presencia de los microorganismos, como se describió en capítulos anteriores, sino que éstos moldean su metabolismo para adaptarse a la presencia del fármaco.

7. Bibliografía

- Adu KT, Wilson R, Nichols DS, Baker AL, Bowman JP, Britz ML. Proteomic analysis of Lactobacillus casei GCRL163 cell-free extracts reveals a SecB homolog and other biomarkers of prolonged heat stress. *PLoS One* 2018;**13**:1–28.
- Aires J, Butel MJ. Proteomics, human gut microbiota and probiotics. *Expert Rev Proteomics* 2011;**8**:279–88.
- Alcántara C, Zúñiga M. Proteomic and transcriptomic analysis of the response to bile stress of Lactobacillus casei BL23. *Microbiology* 2012;**158**:1206–18.
- Celebioglu HU, Delsoglio M, Brix S, Pessione E, Svensson B. Plant Polyphenols Stimulate Adhesion to Intestinal Mucosa and Induce Proteome Changes in the Probiotic Lactobacillus acidophilus NCFM. *Mol Nutr Food Res* 2018;**62**:1–30.
- Celebioglu HU, Ejby M, Majumder A, Købler C, Goh YJ, Thorsen K, Schmidt B, O'Flaherty S, Abou Hachem M, Lahtinen SJ, Jacobsen S, Klaenhammer TR, Brix S, Mølhave K, Svensson B. Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose an emerging prebiotic. *Proteomics* 2016;16:1361–75.
- Chandramouli K, Qian P-Y. Proteomics: Challenges, Techniques and Possibilities to Overcome Biological Sample Complexity. *Hum Genomics Proteomics* 2009;**1**, DOI: 10.4061/2009/239204.
- Coiras M, Camafeita E, López-Huertas MR, Calvo E, López JA, Alcamí J. Application of proteomics technology for analyzing the interactions between host cells and intracellular infectious agents. *Proteomics* 2008;**8**:852–73.
- Davidson AL, Chen J. ATP-binding cassette transporters in bacteria. *Annu Rev Biochem* 2004;**73**:241–68.
- Ejby M, Guskov A, Pichler MJ, Zanten GC, Schoof E, Saburi W, Slotboom DJ, Abou Hachem M. Two binding proteins of the ABC transporter that confers growth of Bifidobacterium animalis subsp. lactis ATCC27673 on β-mannan possess distinct manno-oligosaccharide-binding profiles. *Mol Microbiol* 2019;**112**:114–30.
- Fang J, Lyon DY, Wiesner MR, Dong J, Alvarez P. JJ. Effect of a Fullerene Water Suspension on Bacterial Phospholipids and Membrane Phase Behavior. 2007;**41**:2636–42.
- Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. *Genome Biol* 2017;**18**, DOI: 10.1186/s13059-017-1215-1.
- Hattori M, Torres GA, Tanaka N, Okada S, Endo A, Nakagawa J. Detection and analysis of Lactobacillus paracasei penicillin-binding proteins revealed the presence of cholate-sensitive penicillin-binding protein 3 and an elongated cell shape in a cholate-sensitive strain. *Biosci Microbiota, Food Heal* 2017;**36**:65–72.
- Hussain MA, Hosseini Nezhad M, Sheng Y, Amoafo O. Proteomics and the stressful life of lactobacilli. *FEMS Microbiol Lett* 2013;**349**:1–8.

- Klein G, Schanstra JP, Hoffmann J, Mischak H, Siwy J, Zimmermann K. Proteomics as a Quality Control Tool of Pharmaceutical Probiotic Bacterial Lysate Products. *PLoS One* 2013;**8**, DOI: 10.1371/journal.pone.0066682.
- Kuhn A, Roosjen M, Mutte S, Dubey SM, Carrillo Carrasco VP, Boeren S, Monzer A, Koehorst J, Kohchi T, Nishihama R, Fendrych M, Sprakel J, Friml J, Weijers D. RAF-like protein kinases mediate a deeply conserved, rapid auxin response. *Cell* 2024;**187**:130-148.e17.
- Lima TB, Pinto MFS, Ribeiro SM, Lima LA De, Viana JC, Júnior NG, Cândido EDS, Dias SC, Franco OL. Bacterial resistance mechanism: What proteomics can elucidate. *FASEB J* 2013;**27**:1291–303.
- Liu S, Ma Y, Zheng Y, Zhao W, Zhao X, Luo T, Zhang J, Yang Z. Cold-Stress response of probiotic lactobacillus plantarum K25 by iTRAQ proteomic analysis. *J Microbiol Biotechnol* 2020;**30**:187–95.
- Lv LX, Yan R, Shi HY, Shi D, Fang DQ, Jiang HY, Wu WR, Guo FF, Jiang XW, Gu SL, Chen YB, Yao J, Li LJ. Integrated transcriptomic and proteomic analysis of the bile stress response in probiotic Lactobacillus salivarius LI01. *J Proteomics* 2017;**150**:216–29.
- Ma Y, Pan C, Wang Q. Crystal Structure of Bacterial Cyclopropane-Fatty-Acyl-Phospholipid Synthase with Phospholipid Running title: Crystal Structure of Lacfas with Phospholipid. *J Biochem* 2019;**166**:139–47.
- MacKenzie DA, Tailford LE, Hemmings AM, Juge N. Crystal structure of a mucus-binding protein repeat reveals an unexpected functional immunoglobulin binding activity. *J Biol Chem* 2009;**284**:32444–53.
- Mazzeo MF, Lippolis R, Sorrentino A, Liberti S, Fragnito F, Siciliano RA. Lactobacillus acidophilusrutin interplay investigated by proteomics. *PLoS One* 2015;**10**:1–14.
- Mohebali N, Ekat K, Kreikemeyer B, Breitrück A. Barrier protection and recovery effects of gut commensal bacteria on differentiated intestinal epithelial cells in vitro. *Nutrients* 2020;**12**:1–23.
- De Montijo-Prieto S, Castro DJ, Reina JC, Jimenez-Valera M, Ruiz-Bravo A. Draft genome sequence of Lactobacillus plantarum C4 (CECT 9567), a potential probiotic strain isolated from kefir. *Arch Microbiol* 2019;**201**:409–14.
- Moodley C, Reid SJ, Abratt VR. Molecular characterisation of ABC-type multidrug efflux systems in Bifidobacterium longum. *Anaerobe* 2015;**32**:63–9.
- Muscariello L, De Siena B, Marasco R. Lactobacillus Cell Surface Proteins Involved in Interaction with Mucus and Extracellular Matrix Components. *Curr Microbiol* 2020;**77**:3831–41.
- Naqvi KF, Patin D, Wheatley MS, Savka MA, Dobson RCJ, Gan HM, Barreteau H, Blanot D, Mengin-Lecreulx D, Hudson AO. Identification and partial characterization of a novel UDP-N-acetylenolpyruvoylglucosamine reductase/UDP-N-acetylmuramate: L-alanine ligase fusion enzyme from Verrucomicrobium spinosum DSM 4136T. *Front Microbiol* 2016;**7**, DOI: 10.3389/fmicb.2016.00362.
- Nezhad MH, Knight M, Britz ML. Evidence of Changes in Cell Surface Proteins During Growth of Lactobacillus casei under Acidic Conditions. 2012;**21**:253–60.
- Orelle C, Mathieu K, Jault JM. Multidrug ABC transporters in bacteria. *Res Microbiology.* 2019; **170**: 381-91.

- Ortiz Camargo AR, van Mastrigt O, Bongers RS, Ben-Amor K, Knol J, Abee T, Smid EJ. Quantitative Physiology and Proteome Adaptations of Bifidobacterium breve NRBB57 at Near-Zero Growth Rates. *Microbiol Spectr* 2023;**11**, DOI: 10.1128/spectrum.02568-22.
- Ramiah K, van Reenen CA, Dicks LMT. Expression of the Mucus Adhesion Gene Mub, Surface Layer Protein Slp and Adhesion-Like Factor EF-TU of Lactobacillus acidophilus ATCC 4356 Under Digestive Stress Conditions, as Monitored with Real-Time PCR. *Probiotics Antimicrob Proteins* 2009;**1**:91–5.
- Ruiz L, Margolles A, Sánchez B. Bile resistance mechanisms in Lactobacillus and Bifidobacterium. *Front Microbiol* 2013;**4**, DOI: 10.3389/fmicb.2013.00396.
- Sánchez B, Champomier-Vergès MC, Anglade P, Baraige F, De Los Reyes-Gavilán CG, Margolles A, Zagorec M. Proteomic analysis of global changes in protein expression during bile salt exposure of Bifidobacterium longum NCIMB 8809. *J Bacteriol* 2005;**187**:5799–808.
- Sánchez B, Champomier-Vergès MC, Collado MDC, Anglade P, Baraige F, Sanz Y, De Los Reyes-Gavilán CG, Margolles A, Monique Z. Low-pH adaptation and the acid tolerance response of Bifidobacterium longum biotype longum. *Appl Environ Microbiol* 2007;**73**:6450–9.
- Sanchez B, Ruiz L, De Los Reyes-Gavilán CG, Margolles A. Proteomics of stress response in Bifidobacterium. *Front Biosci* 2008:6905–19.
- Schöpping M, Zeidan AA, Johan C. Stress Response in Bifidobacteria. *Microbiol Mol Biol Rev* 2022;**27**.
- Singh KS, Kumar S, Mohanty AK, Grover S, Kaushik JK. Mechanistic insights into the host-microbe interaction and pathogen exclusion mediated by the Mucus-binding protein of Lactobacillus plantarum. *Sci Rep* 2018;8:2–11.
- Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, Mering C Von. STRING v10: protein protein interaction networks, integrated over the tree of life. 2015;**43**:447–52.
- Tsakou F, Jersie-Christensen R, Jenssen H, Mojsoska B. The role of proteomics in bacterial response to antibiotics. *Pharmaceuticals* 2020;**13**:1–27.
- Yuan L, van der Mei HC, Busscher HJ, Peterson BW. Two-Stage Interpretation of Changes in TEER of Intestinal Epithelial Layers Protected by Adhering Bifidobacteria During E. coli Challenges. *Front Microbiol* 2020;**11**:1–14.
- Zafar H, Saier MH. Comparative Analyses of the Transport Proteins Encoded within the Genomes of nine Bifidobacterium Species. *Microb Physiol* 2022;**32**:30–44.
- Zhang CG, Chromy BA, McCutchen-Maloney SL. Host-pathogen interactions: A proteomic view. *Expert Rev Proteomics* 2005;**2**:187–202.

1. Introducción

La utilización de ensayos *in vitro* otorga resultados sumamente relevantes que nos permiten comprender varios aspectos de la interacción droga-microorganismos-células y obtener datos claves para predecir lo que podría ocurrir en modelos *in vivo*. De todas maneras, la mayoría de los conocimientos actuales sobre los procesos bioquímicos, fisiológicos y endocrinológicos provienen de modelos animales de experimentación, cuyos resultados son luego extrapolados al humano (Carbone et al. 2021). En este sentido, se hace evidente la necesidad de realizar este tipo de ensayos.

Múltiples patologías y condiciones clínicas han sido estudiadas en modelos animales ya sea para examinar su evolución o evaluar, por ejemplo, ciertos tratamientos. Los desórdenes de la coagulación no son la excepción. Los estudios *in vitro* realizados previamente nos demostraron la existencia de una red de interacciones entre los microorganismos probióticos y los anticoagulantes, así como también con células del epitelio intestinal humano. Todo esto sustenta la realización de estudios *in vivo* lo cual permite integrar todas las interacciones y constituyen etapas imprescindibles para darle dimensión real al posible impacto del consumo de probióticos por parte de individuos sometidos a tratamiento anticoagulante. Más aún, en especial para los modelos a nivel gastrointestinal, los estudios *in vivo* permiten determinar la presencia de signos clínicos de desorden intestinal, cambios a nivel histológico de orden inflamatorio, modificaciones en la microbiota y en marcadores celulares.

Los fármacos anticoagulantes ya han sido estudiados en modelos *in vivo* teniendo en cuenta, además, que los derivados cumarínicos funcionan como potentes rodenticidas, encontrándose así los primeros estudios toxicológicos de estas moléculas relacionados a este uso (Penumarthy and Oehme 1978; Thijssen 1995).

Asimismo, la warfarina ha sido evaluada en modelos de daño cardiovascular (Krüger et al. 2013; De Maré et al. 2022) ya que es un inhibidor potente de la proteína de matriz Gla, que funciona previniendo la calcificación de los vasos sanguíneos. Además, se ha estudiado tanto a la warfarina como al rivaroxabán en un modelo de encefalitis experimental autoinmune, encontrándose que, administrados preventivamente, podrían modular la inducción de la enfermedad, disminuyendo localmente la inflamación (Stolz et al. 2017).

El dabigatrán ha sido evaluado también en modelos animales con el objetivo de dilucidar si su uso en poblaciones de riesgo, como los adultos mayores, generaba una mayor predisposición a microhemorragias cerebrales, complicación recurrente con el uso de drogas anticoagulantes (Michael et al. 2019). Para eso se utilizó un modelo de ratón con angiopatía amiloide cerebral que desarrolla espontáneamente hemorragias intracerebrales, lo que a su vez genera mayor predisposición a la aparición de microhemorragias (Michael et al. 2019). Se observó que esta droga no inducía hemorragias intracerebrales ni aumentaba la ocurrencia de las microhemorragias en este

modelo, demostrándose inalterados los marcadores de inflamación de la microglia y astrocitos, así como la integridad de la barrera hematoencefálica (Michael et al. 2019).

Warzecha y colaboradores, han demostrado que el acenocumarol a bajas dosis presenta un efecto antiinflamatorio en un modelo de pancreatitis aguda inducida por isquemia/reperfusión en ratas, que podría estudiarse como posible tratamiento. Además, mejora el flujo sanguíneo y la arquitectura del páncreas (Warzecha et al. 2017). Este efecto se encuentra en concordancia con estudios previos de nuestro grupo con el mismo fármaco anticoagulante en un modelo murino, donde se observa una disminución de citoquinas proinflamatorias (II-12 e INF-Y) en placas de Peyer, nódulos linfáticos mesentéricos y bazo (Assad 2019). Es importante destacar que, al momento de la redacción de esta tesis, los trabajos con AC en modelos animales son escasos.

Particularmente en nuestro grupo, el efecto de la administración de diferentes probióticos ha sido evaluado en diversos modelos animales. En este punto podemos destacar la administración de productos probióticos de manera preventiva a ratones que luego fueron infectados con Giardia intestinalis, encontrándose una disminución de la intensidad de infección (Teijeiro 2019). Este microorganismo patógeno también ha sido estudiado en un modelo merión (Meriones unquiculatus) donde se encontró que el agregado de Lactobacillus johnsonii LA1 al agua de bebida, protegía a los animales de la infección (Humen et al. 2005). En concordancia, Franco y colaboradores han descripto que la administración de kefir también genera una disminución de dicha infección en ratones (Franco et al. 2013). Con otro patógeno, se analizó la capacidad de cepas de Bifidobacterium de la colección del CIDCA, de antagonizar la virulencia de Clostridioides difficile en un modelo de enterocolitis en hámster, encontrándose que la cepa B. bifidum CIDCA 5310 (utilizada en este trabajo de tesis) generaba mejoras en los signos clínicos de animales infectados y disminuía la mortalidad (Trejo, De Antoni and Pérez 2013). Utilizando dos cepas de lactobacilos de la colección del CIDCA, Lactobacillus delbrueckii subsp. lactis y Lactobacillus delbrueckii subsp. bulgaricus, se demostró que su administración a ratones durante 7 días generaba cambios en el perfil de la microbiota intestinal, además de que impulsaba una respuesta inmune intestinal proinflamatoria de baja intensidad y transitoria, cuya función parecería estar vinculada con el mantenimiento de la homeostasis de la mucosa intestinal (Szymanowski 2020).

Del mismo modo, otros grupos de investigación han estudiado la administración oral de partículas inmunobióticas derivadas de dos cepas de *L. rhamnosus* como adyuvantes de una vacuna experimental contra el virus de la hepatitis E genotipo 3 en un modelo de ratón, encontrándose que ambas podían inducir una respuesta inmune humoral antígeno específica (Arce *et al.* 2020). Más aún, investigadores de este mismo grupo se han adentrado en un campo de creciente interés que estudia la respuesta inmune-coagulativa. En este sentido , Zelaya y colaboradores investigaron como una cepa probiótica de *L. rhamnosus*, y un peptidoglicano obtenido de ésta, actuando como molécula inmunomoduladora, participaban en la respuesta inmune y de coagulación en un modelo de ratón de infección viral respiratoria (Zelaya *et al.* 2014, 2023). Los resultados fueron

sumamente alentadores, ya que se encontró que esta cepa de lactobacilos, tenía la capacidad de regular la respuesta inmune y el estado pro-coagulante en la infección viral, evidenciando además la capacidad de estas bacterias de modificar la coagulación (Zelaya et al. 2023).

Con todo lo anteriormente expuesto, y teniendo en cuenta resultados previos de la presente tesis donde se observó que la presencia de bacterias da lugar a efectos sobre el fármaco, el medio y la interacción con células que podrían impactar en los efectos farmacológicos, resulta clave poder dilucidar que sucede *in vivo*, donde se encuentran interactuando en una escena más compleja todos los sistemas y componentes del individuo.

Es objetivo de este capítulo entonces, evaluar *in vivo* en animales a los que se administraron las bacterias en estudio y acenocumarol, la actividad anticoagulante, concentración plasmática de la droga y la expresión de enzimas relacionadas con el metabolismo hepático.

2. Materiales y métodos

2.1 Animales

Para el ensayo *in vivo* se emplearon ratones hembra cepa BALB/cJFyfb, SPF, de 7 semanas provenientes del Bioterio Central de la Facultad de Farmacia y Bioquímica de la Universidad de Buenos Aires.

Los animales fueron trasladados al bioterio de experimentación perteneciente a la Cátedra de Microbiología de la Facultad de Ciencias Exactas de La Plata y se repartieron al azar en cajas con 5 animales cada una. Los primeros 7 días se consideraron de adaptación al bioterio para aclimatar a los animales y reducir el estrés causado por la manipulación, transporte y los cambios en el macro y microambiente. La temperatura fue mantenida constante a lo largo de toda la experiencia en 25° C con un régimen de luz-oscuridad de 12h.

Todos los procedimientos efectuados fueron realizados según el protocolo número: 002-30-18, "Estudio *in vivo* del efecto de microorganismos potencialmente probióticos sobre animales tratados con anticoagulantes orales" aprobado por el CICUAL de la Facultad de Ciencias Exactas (UNLP).

2.2 Acenocumarol

En este caso se realizó un stock de droga de 16 mg/ml en DMF y luego se realizaron diluciones en PBS para lograr las concentraciones finales del estudio. Se ensayaron las siguientes concentraciones a lo largo de todas las experiencias: 2 mg/kg y 1 mg/kg.

2.3 Alimento

Los pellets de alimento (Ganave, Grupo Pilar S.A, Pilar, Buenos Aires, Argentina) fueron esterilizados en autoclave durante 15 minutos a 121 °C con lo cual, además de lograr la esterilización, se minimizaba la concentración de componentes que son potenciales inhibidores de la actividad de anticoagulantes (ej. Vitamina K).

2.4 Suspensiones de las cepas bacterianas

Partiendo de cultivos de las cepas *B. bifidum* CIDCA 5310, *B. adolescentis* CIDCA 5317 y *L. acidophilus* ATCC 314 de 48 h, se inocularon 400 ml de medio MRS + cisteína 0,05 % p/v con 4 ml de cultivo para incubar en anaerobiosis a 37 °C por 24 h (como se detalla en el capítulo 1- sección Materiales y Métodos). Una vez obtenido este material de partida, se centrifugaron los cultivos 10 min. a 12000 g y luego se lavaron dos veces con PBS. Los pellets obtenidos fueron finalmente suspendidos en 15 ml de PBS y 5 ml de sacarosa al 80 % p/v como crioprotector. Estas suspensiones fueron fraccionadas de a 1 ml en criotubos y conservadas a -80 °C hasta su utilización.

Se realizaron recuentos en placa de agar MRS para determinar la concentración de microorganismos obteniéndose alrededor de 1 x 10^{10} ufc/ml. Posteriormente se diluyeron en el agua de bebida para obtener una concentración bacteriana final de 1 x 10^8 ufc/ml. Pasadas las 24 h también se realizaron recuentos de microorganismos del agua de bebida para evaluar los posibles cambios en la viabilidad de las bacterias.

2.5 Medida del tiempo de protrombina (TP)

El tiempo de protrombina se midió utilizando un coagulómetro automático Coatron M1 (Teco Medical Instruments, Alemania)

2.6 Optimización del modelo murino de anticoagulación

En esta primera etapa de la experiencia se buscó optimizar las condiciones del ensayo, focalizando en 3 parámetros: la dosis de acenocumarol para detectar modificaciones del tiempo de coagulación, el tiempo entre la dosificación y la toma de muestra y el tiempo que transcurría entre la toma de muestra y la medida del tiempo de protrombina. En paralelo, también se optimizaron las condiciones analíticas de determinación del tiempo de protrombina. Se evaluaron dos reactivos para la medida del tiempo de protrombina: Soluplastin (Wiener Lab) y Thromborel S (Siemens). Adicionalmente, se ajustaron los volúmenes utilizados (relación reactivo:plasma) debido a la cantidad máxima de sangre obtenida por ratón (aproximadamente 1 ml). Aquí se concluyó que, si bien ambos reactivos eran adecuados para la determinación, el reactivo Thromborel S tenía una mejor respuesta y reproducibilidad por lo que se lo seleccionó para continuar. En cuanto a la optimización de los volúmenes de reactivo y plasma, los manuales de ambos reactivos probados utilizan 100 μl de plasma + 200 μl de reactivo. Teniendo en cuenta que la volemia total del ratón es de aproximadamente 2 ml y que se obtiene 1 ml de sangre por punción cardiaca, se realizaron distintas pruebas con el objetivo de reducir el volumen de plasma a utilizar, obteniéndose que la relación 25 µl de plasma + 50 µl de reactivo conducía a los mismos valores de tiempos de protrombina que al utilizar los volúmenes recomendados por los fabricantes.

Teniendo en cuenta ensayos preliminares, y para determinar el esquema de administración que dé lugar a aumentos significativos del tiempo de protrombina, se probó suministrar a ratones en ayunas, una única dosis de 1,8 mg/kg por vía intragástrica y realizar medidas del tiempo de protrombina a diferentes tiempos para observar la evolución del tiempo de protrombina.

El siguiente paso fue determinar los tiempos de muestreo compatibles con la detección de un efecto significativo sobre el TP. Para esto se evaluaron dos tiempos entre dosificación y toma de muestra: 7 h y 12 h. En ambos casos se utilizó un esquema de dosificación que consistía en una dosis inicial de 2 mg/kg administrada por sonda orogástrica y dos dosis consecutivas de mantenimiento de 1 mg/kg. Los grupos del ensayo se distribuyeron como se detalla a continuación:

Grupo 1: Control Grupo 2: AC 7 h Grupo 3: AC 12 h

Todos los grupos fueron conformados por 5 ratones.

Por último, también se evaluó el impacto del tiempo que pasaba entre la obtención de sangre y la medida del tiempo de protrombina lo cual da cuenta de la robustez del método. Esto fue importante para establecer cuántas muestras podían tomarse antes de proceder a las determinaciones del TP durante los días de muestreo.

Más aún, durante estas experiencias preliminares pudimos encontrar que la toma de muestra es otro punto clave para evidenciar correctamente la actividad anticoagulante. La punción cardiaca es una práctica delicada que requiere entrenamiento y buena manipulación del animal, ya que intentos fallidos en la obtención de muestra pueden generar lesiones vasculares con la consiguiente activación del factor tisular, responsable de la hemostasia frente a estas injurias, así como también el exceso de una presión negativa por una retracción muy vigorosa del émbolo puede colapsar el órgano. Todos estos factores darían lugar a aumento en el TP debido al consumo de factores de coagulación inducidos por daño tisular.

2.7 Esquema experimental seleccionado

En base a todos los resultados y consideraciones anteriores, logramos optimizar las condiciones del ensayo. Se optó por el tiempo de 12 h entre administración de AC y toma de muestra, y el mismo esquema de dosificación descripto más arriba (1 dosis inicial + 2 dosis de mantenimiento).

Se distribuyeron 45 ratones en 9 grupos de 5 ratones cada uno.

Grupo 1: Control I

Grupo 2: Control + AC

Grupo 3: Cepa CIDCA 5310 + AC

Grupo 4: Cepa CIDCA 5317+ AC

Grupo 5: Cepa CIDCA 314+ AC

Grupo 6: Control II

Grupo 7: Cepa 5310

Grupo 8: Cepa 5317

Grupo 9: Cepa 314

A todos los grupos se les administró alimento autoclavado (121 °C, 15 min.) y según correspondiese, agua de bebida con las cepas (como se indicó anteriormente) durante 13 días. La administración de AC por *gavage* se realizó los últimos 3 días. El siguiente esquema describe la secuencia utilizada:

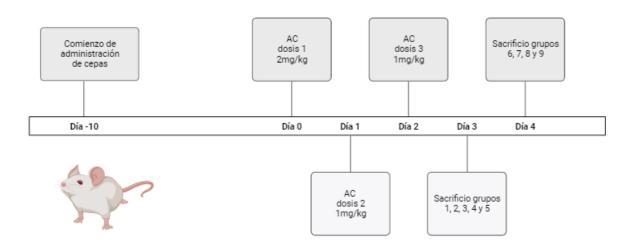


Figura 5.1. Cronología propuesta para el ensayo.

El muestreo fue realizado también por grupos como se observa en la cronología y en orden balanceado, quedando de esta manera cercanas en el tiempo las muestras de los diferentes grupos.

El primer día se muestrearon los primeros 5 grupos y el segundo días los últimos 4 grupos, de allí la existencia de un segundo control (Grupo 6). Para ello los animales fueron anestesiados con una mezcla de Ketamina/Xilacina (9:1) en una dosis de 5 ml/kg. Se procedió a la toma de sangre por punción cardíaca una vez que se comprobaba la perdida de reflejos miotácticos. La sangre fue recibida en microtubos conteniendo citrato (3,8 %p/v) como anticoagulante (relación 1:9 con la sangre) y mezclando suavemente para prevenir hemólisis. Luego, siempre en estado de anestesia profunda, se realizó la dislocación cervical de los ratones.

El plasma fue obtenido por centrifugación de las muestras 15 min a 750 g. Éste constituyó el material de partida para la determinación del tiempo de protrombina y del AC en plasma (por HPLC MS/MS).

Además, se recolectaron muestras de hígado en tubos Eppendorfs conteniendo 300 μ l de RNAlater® (Invitrogen, Thermo Fisher Scientific, EEUU) y tras 24 h a 4 °C se conservaron a -80 °C hasta el momento del procesamiento para qPCR.

2.8 Análisis de la expresión relativa de genes en hígado mediante qPCR

Se evaluó la expresión relativa de dos isoformas del citocromo P450: cyp2c29 y cyp3a11. Como housekeeping se utilizó el gen de θ -actina.

Las muestras fueron procesadas de la misma manera que se detalla en el Capítulo 3 sección 2.3 de Materiales y Métodos con la salvedad que, para la extracción de ARN, los hígados fueron homogeneizados con un mortero para mezclarse con el Bio Zol, según protocolo del fabricante.

El resto de los pasos y condiciones del ensayo, así como volúmenes utilizados en la *premix* para la reacción de qPCR se mantuvieron invariantes.

A continuación se listan la secuencia de los primers utilizados

Tabla 5.1 Secuencias de los primers utilizados y su correspondiente dilución de trabajo

Gen		Secuencia	Dilución de trabajo
в-actina	Pf	5'-CGTCATCCATGGCGAACTG-3'	1/40 del stock
	Pr	5'-GCTTCTTTGCAGCTCCTTCGT-3'	
cyp3a11	Pf	5'-AGGCAGAAGGCAAAGAAAGGCAAG-3'	1/10 del stock
	Pr	5'-TGAGGGAATCCACGTTCACTCCAA-3'	
cyp2c29	Pf	5'-CACAGCTAAAGTCCAGGAAGAG-3'	1/10 del stock
	Pr	5'-GAATCATGGCGTCTGTATAGGG-3'	

Pf: primer forward

Pr: primer reverse

cyp3a11: Citocromo P450 familia 3 subfamilia A miembro 11

cyp2c29: Citocromo P450 familia 2 subfamilia C miembro 29

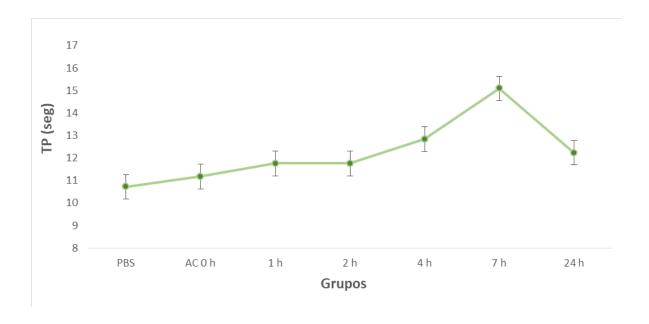
La secuencia para los genes correspondientes a los citocromos fueron diseñadas utilizando las bases de datos NCBI e IDT y sintetizadas por GBToligos (Genbiotech SRL, Buenos Aires).

La secuencia del cebador de β -actina fue extraída del trabajo de Rumbo y colaboradores (Rumbo *et al.* 2004).

2.9 Evaluación de la concentración de AC en plasma de ratón

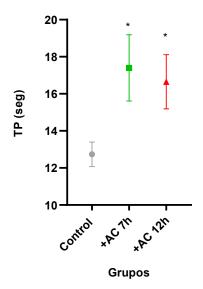
Este estudio fue realizado en el Centro de Investigaciones Medioambientales (CIM-CONICET, UNLP) mediante espectrometría de masas. A continuación se detalla la metodología del procesamiento de las muestras.

Las muestras de plasma fueron diluidas con acetonitrilo en frío y luego centrifugadas en centrifuga refrigerada. Los extractos fueron filtrados por membranas de nylon de 0,22 µm y colocados en viales cromatográficos. Para la determinación instrumental se utilizó un cromatógrafo líquido acoplado a un espectrómetro de masas tándem, consistente en un sistema separativo HPLC, modelo Alliance 2695 acoplado a un espectrómetro de masas de cuadrupolos en tándem Quattro Premier XE (ambos marca Waters®) con argón como gas de colisión y con fuente de ionización de electrospray en modo positivo y negativo, según condiciones de ionización de cada analito. Se utilizó, para la separación, una columna CSH


C18 (75 mm × 4,6 mm ID, marca Waters®) con gradiente metanol/agua. Se optimizó el sistema de detección sobre estándares en modo MRM (modo de reacción múltiple) para establecer una transición de cuantificación y transiciones de confirmación de identidad del analito de interés conforme a lineamientos de aseguramiento de la calidad para análisis descriptos en la normativa SANTE/11312/2021 de la Comunidad Europea.

3. Análisis

Los datos de tiempo de protrombina fueron analizados utilizando el software InfoStat y GraphPad Prism 8 (GraphPad Software Inc., California, EEUU) y realizando un análisis no paramétrico través de la prueba de Kurskal-Wallis (p<0,05). Los datos de concentración de AC en suero fueron analizados por GraphPad Prism 8 utilizando la prueba no paramétrica de Kruskal-Wallis (p<0,05). La expresión relativa de los genes fue calculada utilizando el método de expresión relativa $2^{\Lambda^{-\Delta\Delta Ct}}$ siendo Ct el valor umbral del número de ciclos. Se evaluaron las muestras provenientes de 3 animales de cada grupo, por duplicado. A partir de estos valores se calculó el Ct promedio y la desviacíon estándar. El analisis estadísico fue realizado utilizando la prueba de Kruskal-Wallis (p< 0,05).


4. Resultados

Para optimizar el modelo experimental de ratón anticoagulado, en una primera instancia realizamos la cinética del TP en animales a los cuales se les administró una única dosis de AC 1,8 mg/kg. Como se observa en la figura 5.2, se encontró que a las 7 h el tiempo de protrombina medido fue máximo, mientras que a las 24 h descendía a valores control.

Figura 5.2. Cinética del tiempo de protrombina de plasma de ratones administrados con una única dosis de AC de 1,8 mg/kg a diferentes tiempos post administración. Las barras indican el error típico.

Continuando con la evaluación de la ventana temporal entre dosificación y toma de muestra que nos permitía advertir un aumento del tiempo de protrombina, para poder determinar el rango temporal de trabajo, se dividieron los animales en dos grupos. Ambos grupos tenían el mismo esquema de dosificación (dosis inicial + 2 dosis consecutivas de mantenimiento), pero las muestras del primer grupo fueron obtenidas luego de 7 h de la dosificación y las del segundo, luego de 12 h (Figura 2.6).

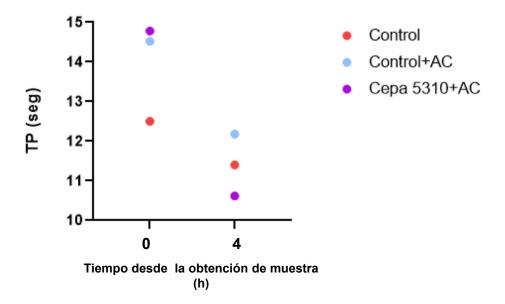
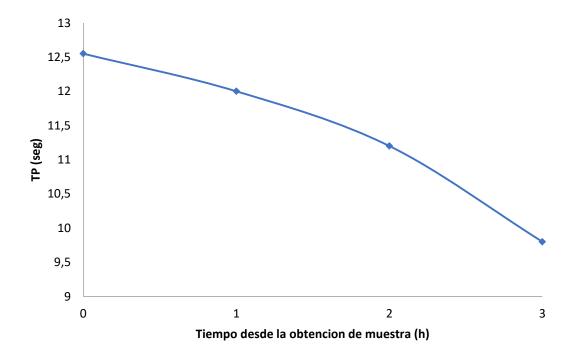


Figura 5.3. Comparación de los valores de tiempo de protrombina obtenidos en plasma de ratones luego de 7 h (verde) y 12 h (rojo) del esquema de dosificación: 2 mg/kg de AC día 1 y dos dosis consecutivas de 1 mg/kg (día 2 y 3). * Indica p<0,05 con respecto al control. Las barras indican desviación estándar de cinco medidas independientes.

Como se aprecia en la figura 5.3, se observó efecto anticoagulante tanto para 7 h como para 12 h de obtención de muestra de sangre (p < 0.05) de ratones dosificados con el esquema dosis inicial (2 mg/kg x 1 día) + dosis de mantenimiento (1 mg/kg x 2 días), concluyéndose que esta ventana temporal es en la que se presenta un aumento detectable del tiempo de protrombina que nos permite advertir la actividad anticoagulante del fármaco.


Para poder perfeccionar nuestro modelo, se determinó el tiempo en el cual podíamos medir el TP desde la toma de muestra, sin alterar la calidad de las medidas.

Para esto, las mismas muestras de plasma fueron evaluadas con 4 h de diferencia, comparando valores de plasma de ratones control, ratones tratados con AC y tratados con AC y bifidobacterias (CIDCA 5310), observándose lo graficado en la figura 5.4.

Figura 5.4. Comparación de los valores de tiempo de protrombina obtenidos luego del muestreo, a tiempo 0 h y luego de 4 h.

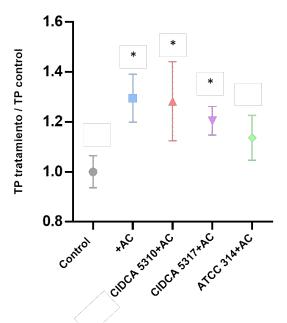
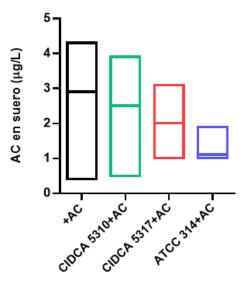

Luego de la obtención de estos resultados, para profundizar en este efecto, se realizó una cinética del tiempo de protrombina con plasma de ratón anticoagulado. Se pudo apreciar la curva ilustrada en la figura 5.5, sosteniendo lo mostrado en el grafico 5.4.

Figura 5.5. Variación del tiempo de protrombina con el tiempo que transcurre entre la obtención de la muestra y la medición.

Como corolario, se puede concluir entonces, la importancia de realizar la medida en un tiempo acotado luego de la extracción de sangre ya que, de manera contraria, los valores de TP se acercan a los valores de ratones no anticoagulados. Por lo tanto, las medidas de coagulación se hicieron en varias tandas durante el curso del muestreo.

Procediendo ya con el esquema final de experimentación como se detalla en la sección 2.7 de materiales y métodos, teniendo en consideración todos nuestros resultados preliminares, en el gráfico 5.6 se detallan los resultados obtenidos del tiempo de protrombina normalizados con respecto al valor control. Los valores del TP de plasma no tratado presentan un promedio de 11.93 ± 0.65 segundos mientras que los tratados ascienden a 14.93 ± 1.11 . Además, es importante aclarar que los grupos a los que se les administraron solamente las cepas, no modificaron el TP con respecto al control siendo los tiempos obtenidos $12,18 \pm 0,62$, $12,03 \pm 0,34$ y $11,80 \pm 0,81$ para las cepas CIDCA 5310, CIDCA 5317 y ATCC 314 respectivamente.

Figura 5.6. Valores de tiempo de protrombina obtenidos para los diferentes grupos en estudio normalizados con respecto al valor del grupo control. * Indica un p<0.05 con respecto al control. Las barras indican desviación estándar de cinco muestras independientes.


Aquí se observa claramente como aumenta el tiempo de protrombina de los ratones anticoagulados con respecto al grupo control. El análisis estadístico de los datos en este caso, reveló que el control no tratado es significativamente diferente al control con AC, demostrándose así la presencia de la actividad anticoagulante. En cuanto a los grupos de ratones anticoagulados a los que se les administraron las cepas bacterianas, se destaca en primera instancia, que la presencia de la cepa ATCC 314 presentó una modificación del TP, generando una disminución del mismo con respecto al grupo al que solo se le administró

anticoagulante (13,10 \pm 1,0 seg vs 14,92 \pm 1,11 seg). El análisis estadístico demostró que no se encontraron diferencias significativas entre este grupo y el grupo control no tratado (Figura 5.6).

Por otro lado, podemos ver que tanto la cepa CIDCA 5310 como la cepa CIDCA 5317 no modifican el efecto anticoagulante presentando valores de TP similares al del grupo control con AC (Figura 5.6).

Luego con el objetivo de conocer la concentración de AC en el plasma de los ratones, se realizó un análisis por espectrometría de masas donde se midió la concentración de AC en estas muestras.

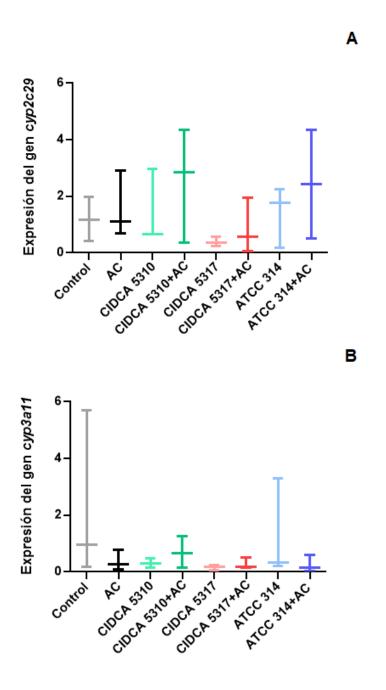

En la figura 5.7 se presentan los resultados obtenidos, donde puede observarse que, tanto para las muestras control con AC como para aquellos grupos de ratones anticoagulados con administración de las cepas CIDCA 5310 y CIDCA 5317, se obtuvieron valores de concentración similares y mayores que las muestras provenientes del grupo de ratones anticoagulado y con administración de la cepa ATCC 314 (Figura 5.7). Si bien la estadística no arrojó datos significativos, esto resulta de gran relevancia ya que refuerza lo obtenido para esta cepa en la figura 5.6 donde se observan valores de TP que no difieren de los valores control no tratado.

Figura 5.7. Concentración de AC (μ g/L) en plasma de ratones anticoagulados. El gráfico representa la distribución de los valores obtenidos para tres muestras por grupo.

Como se mencionó en la sección de Materiales y Métodos, los hígados de los ratones fueron conservados luego del sacrificio para poder evaluar la expresión de distintos genes mediante qPCR.

En este sentido se evaluaron dos genes correspondientes a la familia del citocromo P450; las isoformas 2c29 y 3a11, enzimas que participan de la metabolización de xenobióticos en estos animales.

Figura 5.8. Expresión relativa de los genes *cyp2c29* (A) y *cyp3a11* (B) en hígado de ratón. El gráfico muestra los resultados de tres muestras independientes para cada grupo evaluado y las barras la desviación estándar obtenida.

Como se observa para la isoforma 2c29, la presencia de AC en los grupos correspondientes a cada cepa, muestra un aumento de los valores promedio de expresión del gen, si bien el efecto está sujeto a una gran variación interindividual que no permite apreciar diferencias significativas (Figura 5.8). Para la cepa CIDCA 5310 y ATCC 314 la presencia de la droga genera el aumento más notable, mientras que para la cepa CIDCA 5317 el valor correspondiente a las muestras sin AC resulta bajo y la presencia del anticoagulante modifica levemente esta expresión (Figura 5.8).

Para el caso de la segunda isoforma evaluada, 3a11, los valores de expresión relativa resultan bajos en todos los casos y según el análisis estadístico, tampoco se encuentran diferencias entre los grupos estudiados (Figura 5.8). Si bien los resultados del grupo control parecerían tender al aumento de la expresión, podemos ver que el promedio de los datos se encuentra baja como en el resto de los casos (Figura 5.8).

5. Discusión

A lo largo del presente trabajo de tesis se ha demostrado que existe una interacción entre microorganismos y moléculas de anticoagulantes que podría generar un impacto en la función farmacológica de los mismos. Además, se determinó que esta interacción debe estudiarse contemplando otros factores, como el entorno y la presencia de células epiteliales. Asimismo, se ratificó mediante los resultados de proteómica que un mismo estímulo, como el agregado del anticoagulante a los cultivos, genera respuestas celulares diferentes, remarcando los efectos diferenciales de las cepas. Es en este contexto que los ensayos realizados en el modelo murino resultaron de vital importancia para asemejar el escenario en estudio a un sistema más real en términos fisiológicos.

Las condiciones preanalíticas en la determinación de valores de hemostasia y factores de coagulación son de gran relevancia en la práctica clínica. Varias guías y trabajos han estudiado a lo largo del tiempo la influencia de estas condiciones en los resultados, que inciden directamente en las decisiones terapéuticas en ciertos casos, como con los pacientes anticoagulados. Dentro de las condiciones preanalíticas a tener en cuenta, se deben destacar la toma de muestra, el tipo de tubo y anticoagulante utilizado para dicho procedimiento, el transporte y el tiempo y temperatura en los cuales las medidas se mantienen estables (Feng *et al.* 2014). No hay que perder de vista, que ciertos factores de la cascada de coagulación se analizan en forma conjunta para reducir costos, debiendo así congelar las muestras de plasma hasta su posterior análisis, por lo que también se encuentra vasta información sobre el correcto almacenamiento de las mismas (Gaudard *et al.* 2022; Sinegre *et al.* 2023).

Si bien en la clínica, el TP es una medida dentro de las tantas que se realizan en hemostasia (tiempo de protrombina parcial activada, Factor VI, Factor VIII, Factor IX, entre otros), presenta sus indicaciones particulares. Diferentes autores han demostrado que esta medida se mantiene estable durante 24 h tanto a 4 °C como a 25 °C, utilizando plasma fresco (Rao et al. 2000; Zhao and Lv 2013; Feng et al. 2014), mientras que otros señalan que el tiempo durante el cual permanece estable es menor y puede oscilar entre 4 y 6 h (van Geest-Daalderop, Mulder and Boonman-de Winter 2005; Saghir, Al-Hassan and Saeed Ali Al-Salahi 2012). Por otro lado, Goudard y colaboradores estudiaron el efecto de un ciclo de congelación/descongelación en las medidas del TP a lo largo de 6 h, encontrándose que el valor iba disminuyendo con el tiempo transcurrido desde la descongelación (Gaudard et al. 2022). Contemplando todos estos estudios, se torna evidente que la realización de estas medidas requiere un ajuste preciso de varias condiciones preanalíticas.

Con respecto a los ensayos en modelos murinos, varios métodos se han descripto para la toma de sangre, como la punción cardiaca o la extracción por la vena cava inferior (Brake et al. 2019). Ambos métodos terminales presentan la ventaja de la obtención de hasta 1

ml de sangre, lo que permite *a posteriori* contar con más plasma para las determinaciones. Como se ha mencionado en la puesta a punto del modelo, nuestros ensayos se realizaron mediante punción cardiaca sin la apertura quirúrgica del animal. Lo que aquí se persigue es la obtención del mayor volumen de sangre posible en la menor cantidad de intentos, para prevenir la coagulación de la muestra. El hecho de reingresar con la aguja al corazón puede producir una activación del factor tisular, proteína ya estudiada además por sus efectos inflamatorios, trombóticos e incluso angiogénicos (Mackman 2006). Esta proteína presenta un patrón de expresión diferencial, siendo mayor, por ejemplo, en tejidos como el del corazón y bajo en músculo esquelético y además, se encontró que la ausencia del mismo en ratones produce sangrado selectivo en corazón, pulmón, testículos y útero (Mackman 2006).

La realización de este tipo de medidas en modelos murinos es delicada y requiere del conocimiento y control de variables claves para asegurar la calidad de la muestra. Durante la etapa preliminar de estos ensayos todos estos puntos fueron evaluados y así optimizados para el correcto desarrollo del ensayo final.

Ante todo, es importante destacar que los valores de TP obtenidos durante los ensayos para los animales no tratados se encontraron dentro de los 9-12 segundos, rango ya establecido para ratones, y cuya amplitud se explica por diferencias entre cepas (Emeis *et al.* 2007).

La evolución del TP a lo largo del tiempo transcurrido desde la dosificación, permitió establecer en qué ventana temporal era adecuada la toma muestra, observándose que a las 24 h de la dosificación de los animales el TP caía, probablemente por consecuencia de la metabolización del fármaco. Este proceso es de vital importancia para no pasar por alto la actividad anticoagulante y ya se ha contemplado en otros modelos de ratón anticoagulados con warfarina y rivaroxabán (Stolz *et al.* 2017). La brecha temporal entre dosificación y toma de muestra fue disminuida, seleccionando finalmente el tiempo de 12 h.

Nuestros resultados muestran que, los ratones siguen mostrando efecto anticoagulante cuando son suministrados con la cepa CIDCA 5310 y CIDCA 5317. Este efecto, no se observa con la cepa ATCC 314 cuyos TP reflejan valores similares a los de los ratones no anticoagulados. Además, es importante destacar que en los grupos a los cuales se les administró solamente probióticos, no se observaron modificaciones del TP con respecto al control.

La microbiota intestinal no es un simple espectador cuando hablamos de metabolización de fármacos. Este concepto no es nuevo, ya se encuentra descripto que la microbiota se comporta como un órgano con una capacidad metabólica similar a la del hígado (Sousa *et al.* 2008). La metabolización de drogas por parte de los microorganismos intestinales puede dar lugar a diferentes consecuencias sobre la actividad conduciendo a aumento o disminución de la acción farmacológica (Sousa *et al.* 2008). En nuestros estudios, la administración de cepas bacterianas concomitantemente con el AC permitió determinar

que las cepas de *Bifidobacterium* no tienen efecto sobre la actividad anticoagulante en los ratones mientras que la administración de la cepa ATCC 314 generó disminución de los valores de TP con respecto a los valores obtenidos para el grupo control anticoagulado.

Teniendo en cuenta los resultados obtenidos en el capítulo 4, es válido conjeturar que la cepa ATCC 314 podría estar adhiriéndose al epitelio intestinal mediante la expresión de proteínas MUB, lo que generaría una menor absorción del fármaco y por ende una menor concentración plasmática.

Más aún se podría pensar que la actividad de la cepa ATCC 314, no esté relacionada directamente con la modificación del acenocumarol sino con una modulación de la microbiota. En este sentido ya es sabido que los microorganismos probióticos tienen la capacidad de modular la composición de bacterias en el tracto gastrointestinal (Plaza-Diaz et al. 2019). Esta modificación podría aumentar la cantidad y diversidad de enzimas presentes en el lumen intestinal que afecten a la molécula de acenocumarol, disminuyendo así la concentración de la molécula activa que llegue al plasma. Respaldan estos resultados, estudios realizados con una cepa de *L. rhamnosus* en ratas utilizando el verapamilo. Se encontró un aumento de la metabolización del medicamento en presencia de estas bacterias, explicándose en parte por los cambios en la composición de la microbiota luego de la administración de los lactobacilos (Liu et al. 2021).

Por otra parte, el efecto de las cepas sobre la capacidad anticoagulante del AC se observó cuando se siguió el esquema de dosis: 2 mg/kg inicial + 1 mg/kg durante dos días consecutivos. Si calculamos cuales serían las dosis equivalentes para humanos de 60 kg, encontramos que 2 mg/kg equivale a 9,7 mg y 1 mg/kg a 4,9 mg AC. En el apéndice de este capítulo se muestra la fórmula utilizada para este cálculo basada en el trabajo de Nair y colaboradores (Nair and Jacob 2016). Estos valores están de acuerdo con esquemas que proponen una dosis única inicial de 10 mg y luego ajuste de dosis de acuerdo con los valores de RIN obtenidos, siendo los valores superiores a 4 mg/día una dosificación necesaria para pacientes bajo este régimen de tratamiento, en días alternados, de tal manera de mantener estable el valor de RIN en rango adecuado a la clínica del paciente. En ensayos previos realizados en nuestro grupo de trabajo se han utilizado dos dosis consecutivas de 0,3 mg/kg de AC en ratones para evidenciar actividad anticoagulante (Assad 2019). Sin embargo, en el presente trabajo, se prefirió optar por el esquema previamente presentado para intentar emular la dosificación en humanos, con una dosis inicial y luego de mantenimiento. Además, la dosificación fue planeada de manera tal de que la diferencia evidenciada en los TPs otorgue un margen que permita a su vez evidenciar posibles impactos de la actividad bacteriana Estudios previos de drogas anticoagulantes en este modelo animal muestran la utilización de una variedad de dosis, así como diferentes presentaciones. De Mare y colaboradores proponen en sus ensayos una dieta rica en warfarina (3 mg de warfarina/ g de dieta) (De Maré et al. 2022) mientras que otros autores, como Yokotani, establece un régimen de dos días de tratamientos a dosis de 0,25 mg/kg (Yokotani *et al.* 2014).

El análisis de acenocumarol en plasma y otros fluidos biológicos por métodos cromatográficos ya se encuentra descripto en varios trabajos. La necesidad de datos farmacocinéticos para este medicamento en humanos llevó a la realización de diversos estudios donde se intentó optimizar la medida de AC en el plasma de los pacientes bajo este tratamiento (Wong and Solomonraj 1979; Pommier *et al.* 1994). Con el avance de diversas metodologías y equipamiento, en la bibliografía se encuentran descriptos también, ensayos de detección de AC y sus enantiómeros así como su forma hemicetálica (Rentsch *et al.* 2000; Chaudhari, Mhaske and Shirkhedkar 2022).

En el presente capítulo se ha analizado la concentración de AC en plasma de ratones mediante el uso de un espectrómetro de masas. En este sentido se buscó trazar una correlación entre las variaciones del tiempo de protrombina obtenidos en los diferentes grupos de animales y la concentración plasmática de la droga, entendiendo que a mayor concentración plasmática mayor efecto anticoagulante. De este análisis se pudo concluir que los grupos de ratones anticoagulados a los que se administraron las cepas presentaban una concentración de AC en plasma sin diferencias significativas con el control de anticoagulación, lo que se corresponde con el valor de TP para las bifidobacterias. Se destaca que para la cepa ATCC 314 se observó el valor promedio de concentración más bajo. Esto reforzaría nuestra hipótesis de la acción diferencial de la cepa ATCC 314, que actúa en detrimento de la actividad anticoagulante. Estas observaciones se encuentran en concordancia con estudios previos en modelos murinos. Investigaciones sobre el consumo concomitante de acetaminofeno y probióticos en ratones, demostraron que la absorción de este fármaco y su subsecuente concentración plasmática se veía comprometida por un cambio en la microbiota, inducido por los probióticos, que generaba mayor metabolismo intestinal de la molécula (Kim et al. 2018). Además, las bacterias ensayadas en el trabajo mencionado pertenecían al género Lactobacillus (Kim et al. 2018). El estudio del efecto de bacterias ácido lácticas se ha analizado también sobre ginsenósidos, componentes del ginseng, demostrando que el suplemento de estas bacterias a los animales generaba mayor cantidad de metabolitos deglicosilados en el plasma (Jeon et al. 2021). Recientemente, Li ٧ colaboradores, describieron que la administración concomitante de lovastatina con una cepa de lactobacilos, Lacticaseibacillus paracasei Zhang, alteraba la absorción de la droga a nivel intestinal en un modelo de hámster (Li and Li 2024). Los autores concluyeron que el mecanismo de acción de esta cepa sobre la droga se encontraba vinculado a la modificación de la microbiota intestinal de los animales (Li and Li 2024). Lee y colaboradores comprobaron también, en un modelo de ratas, que la administración de sulfazalasina, un medicamento utilizado para la colitis ulcerosa, en conjunto con cepas probióticas modificaba el

metabolismo intestinal de la droga, pero no alteraba sus concentraciones plasmáticas (Lee et al. 2012).

El metabolismo de acenocumarol en humanos es llevado a cabo principalmente en el hígado por enzimas pertenecientes a la familia del citocromo P450, como se va se explicado anteriormente en la presente tesis. En este capítulo se han elegido dos isoformas para evaluar su expresión relativa, Cyp2c29 y Cyp3a11. Ambas son enzimas metabolizadoras de drogas en hígado de ratones (Claus et al. 2011). La enzima 2c29 además, se expresa de mayor manera en hembras adultas y tiene como sustratos descriptos a las cumarinas así como a otras drogas y ácidos grasos (Hart et al. 2009; Hrycay and Bandiera 2010). Por otro lado, la enzima 3a11 también se encuentra expresada en hígado y corresponde a la forma ortóloga de la isoforma 3a4 humana, una de las principales responsables del metabolismo de AC (Hrycay and Bandiera 2010). Ya se ha evaluado el cambio de la expresión de estos genes en hígado en modelos de injuria inducida por fármaco, particularmente acetaminofeno (Bao et al. 2022). En este sentido, Bao y colaboradores describieron como el daño hepático producido por esta droga generaba una disminución de la expresión de las enzimas del citocromo P450 lo que afectaba el metabolismo de otros fármacos, como sedantes. Además analizaron que para ciertas dosis de acetaminofeno la expresión de estas enzimas era recuperable luego de 72 h pero esto no sucedía para dosis altas (Bao et al. 2022).

Con respecto a los resultados obtenidos en el presente capítulo, se encuentran mayores dispersiones en los valores cuando analizamos la isoforma 2c29. Si bien estas diferencias no resultan estadísticamente significativas por la dispersión de los datos obtenidos, producto de la variabilidad interindividual, se puede apreciar que para el caso de los grupos CIDCA 5310+AC y ATCC 314+AC, los valores de la expresión son mayores. Estos resultados se tornan interesantes ya que nos permiten ampliar nuestro conocimiento sobre los posibles mecanismos de acción de los lactobacilos sobre la actividad anticoagulante. Podría plantearse que, el aumento de la expresión de esta enzima en el hígado de ratones que fueron administrados con la cepa ATCC 314+AC, generó un mayor metabolismo hepático de la droga, resultando en una menor concentración plasmática y por ende menor actividad anticoagulante.

Por otro lado, no es menor mencionar la regulación de la expresión de las enzimas pertenecientes al citocromo P450 por el factor de transcripción PXR o Receptor X de Pregnano y CAR o Receptor Constitutivo de Androstano, proteínas que pertenecen a la superfamilia de receptores nucleares. Ambos se encuentran involucrados tanto en la expresión basal como inducible de varias isoformas de los citocromos además de relacionarse con la homeostasis hepática mediante la regulación del metabolismo de endobióticos (Tebbens *et al.* 2018; Cai, Young and Xie 2021). Además, presentan una gran variedad de ligandos a los que se pueden unir como la rifampicina, el ácido indol propiónico, el fenobarbital y los ácidos biliares como el ácido litocólico (Venkatesh *et al.*

2014; Cai, Young and Xie 2021). PXR se encuentra ampliamente distribuido tanto a lo largo de varios tejidos del cuerpo humano como de los roedores y su expresión coincide con los tejidos donde también se encuentra expresado en mayor medida los citocromos de la famila 3A (Qiao et al. 2013). Estudios previos sobre el efecto de microorganismos probióticos sobre medicamentos, como el caso mencionado de los lactobacilos y el verapamilo, proponen que el cambio en la concentración de la droga no se debía a un efecto directo de las bacterias benéficas (Liu et al. 2021). En cambio, se demostró que los lactobacilos eran capaces de alterar el perfil de la microbiota intestinal de las ratas y que el metabolismo de estos microorganismos podía producir moléculas que activen PXR, lo que a su vez induciría la expresión de enzimas pertenecientes al citocromo p450 tanto en intestino como hígado (Liu et al. 2021). Estas moléculas podrían ser por ejemplo, ácidos biliares secundarios como demostraron Venkatesh y colaboradores (Venkatesh et al. 2014). En este capítulo se describió tanto el descenso de la actividad anticoagulante por la presencia de la cepa ATCC 314, lo que a su vez se correlacionaba con una menor concentración de AC en plasma, como una tendencia al aumento de la expresión del citocromo 2c29 en hígado, postulándose a este último como un mecanismo probable del descenso de la actividad anticoagulante. Teniendo en cuenta la implicancia entonces, de PXR, esto último puede ser profundizado, hipotetizando que esta cepa puede generar cambios en la microbiota de los ratones lo que a su vez modificaría la cantidad y variedad de moléculas y metabolitos en el entorno intestinal que puedan activar a este factor de transcripción, promoviendo así el aumento de la actividad del citocromo sobre la droga, aumentando su metabolismo.

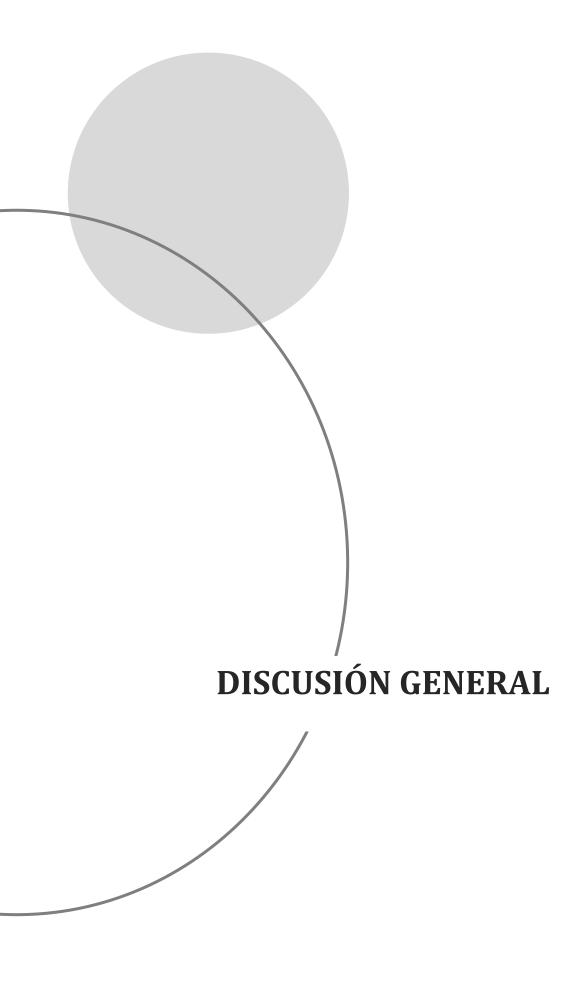
Por otro lado, no es menor mencionar lo obtenido en el capítulo precedente donde el análisis del proteoma de la cepa ATCC 314 en presencia de AC reveló que esta bacteria aumentaba proteínas de adhesión a mucus, en un sistema de cultivo *in vitro*. En concordancia con los resultados obtenidos para la actividad anticoagulante observada en ratones, otro mecanismo posible a considerar es que la adhesión de estas bacterias al epitelio intestinal limite la absorción del fármaco, disminuyendo así la concentración en plasma o que esta cepa module ciertos receptores de AC en células del epitelio intestinal, como P-gp, causando el mismo efecto de disminución de la absorción.

Varios estudios han revelado la importancia de regular el consumo (1 ó 2 veces semanales) de ciertos alimentos como por ejemplo, espinaca y brócoli, debido a su alto contenido de vitamina K, que podría inhibir el efecto anticoagulante requiriendo un ajuste de dosis (Karlson, Leijd and Hellstrom 1986; Tan and Lee 2021). Opuesto a esto, otros componentes pueden producir una potenciación del efecto anticoagulante, presentando riesgo de hemorragia severa (Tan and Lee 2021). Ge y colaboradores describen varios compuestos que podrían producir dicha potenciación como el arándano, el jengibre y la manzanilla (Ge, Zhang and Zuo 2014). En este sentido es importante destacar, además, que el consumo de hierbas medicinales en conjunto con medicamentos prescriptos ha aumentado en los últimos años, lo que resulta problemático principalmente por falta de

control de calidad en estos productos (Holbrook et al. 2005; Ge, Zhang and Zuo 2014; Tan and Lee 2021).

De todo lo expuesto se desprende que existe una gran variedad de compuestos capaces de producir alteraciones sobre las moléculas de anticoagulante, afectando su función. Nuestros hallazgos resultan de gran relevancia en primera medida porque demuestran la capacidad de una cepa de lactobacilos, bacteria altamente utilizada en la industria en la formulación de productos probióticos, de modificar la actividad anticoagulante del acenocumarol. Además, pone de manifiesto que los efectos observados *in vitro* para las tres cepas no se correlacionan con el efecto *in vivo*, remarcando la importancia de la realización de este tipo de estudios.

Al momento de la redacción de esta tesis no se encontraron antecedentes sobre la relación entre microorganismos probióticos y anticoagulantes en un modelo de ingesta concomitante *in vivo* sentando un precedente para continuar investigando y ampliando posibles compuestos presentes en los alimentos capaces de interactuar con anticoagulantes orales.


7. Bibliografía

- Arce LP, Raya Tonetti MF, Raimondo MP, Müller MF, Salva S, Álvarez S, Baiker A, Villena J, Vizoso Pinto MG. Oral Vaccination with Hepatitis E Virus Capsid Protein and Immunobiotic Bacterium-Like Particles Induce Intestinal and Systemic Immunity in Mice. *Probiotics Antimicrob Proteins* 2020;**12**:961–72.
- Assad SE. Probióticos basados en bifidobacterias : interacción con células fagocíticas y acenocumarol. *Tesis doctoral. Facultad de Ciencias Exactas, Universidad Nacional de La Plata* 2019
- Bao Y, Phan M, Zhu J, Ma X, Manautou JE, Zhong XB. Alterations of Cytochrome P450–Mediated Drug Metabolism during Liver Repair and Regeneration after Acetaminophen-Induced Liver Injury in MiceS. *Drug Metab Dispos* 2022;**50**:694–703.
- Brake MA, Ivanciu L, Maroney SA, Martinez ND, Mast AE, Westrick RJ. Assessing Blood Clotting and Coagulation Factors in Mice. *Curr Protoc Mouse Biol* 2019;**9**:e61.
- Cai X, Young GM, Xie W. The xenobiotic receptors PXR and CAR in liver physiology, an update. Biochim Biophys Acta - Mol Basis Dis 2021;**1867**:166101.
- Chaudhari SR, Mhaske PD, Shirkhedkar AA. A Brief Review on Determination of Acenocoumarol in Biological and Pharmaceutical Specimens: Analytical Methodologies. *Crit Rev Anal Chem* 2022;**52**:627–36.
- Claus SP, Ellero SL, Berger B, Krause L, Bruttin A, Molina J, Paris A, Want EJ, de Waziers I, Cloarec O, Richards SE, Wang Y, Dumas ME, Ross A, Rezzi S, Kochhar S, van Bladeren P, Lindon JC, Holmes E *et al.* Colonization-induced host-gut microbial metabolic interaction. *MBio* 2011;**2**, DOI: 10.1128/mBio.00271-10.
- Emeis JJ, Jirouskova M, Muchitsch EM, Shet AS, Smyth SS, Johnson GJ. A guide to murine coagulation factor structure, function, assays, and genetic alterations. *J Thromb Haemost* 2007;**5**:670–9.
- Feng L, Zhao Y, Zhao H, Shao Z. Effects of storage time and temperature on coagulation tests and factors in fresh plasma. *Sci Rep* 2014;**4**, DOI: 10.1038/srep03868.
- Food and Drug Administration. Guidance for Industry Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers Pharmacology and Toxicology Guidance for Industry Estimating the Maximum Safe Starting Dose in Initial Clinical Trials ., 2005.
- Franco MC, Golowczyc MA, De Antoni GL, Pérez PF, Humen M, Serradell M de los A. Administration of kefir-fermented milk protects mice against Giardia intestinalis infection. *J Med Microbiol* 2013;**62**:1815–22.
- Gaudard M, Boissier E, Talon L, Douxfils J, Sapin AF, Sinegre T, Lebreton A. Stability of coagulation parameters in plasma samples at room temperature after one freeze/thaw cycle. *Int J Lab Hematol* 2022;**44**:610–8.

- Ge B, Zhang Z, Zuo Z. Updates on the clinical evidenced herb-warfarin interactions. *Evidence-based Complement Altern Med* 2014;**2014**, DOI: 10.1155/2014/957362.
- van Geest-Daalderop J, Mulder A, Boonman-de Winter L. Preanalytical Variables and Off-Site Blood Collection: Influences on the Results of the Prothrombin Time/International Normalized Ratio Test and Implications for Monitoring of Oral Anticoagulant Therapy. *Clinical Chemistry* 2005 51(3):561-8.
- Hart SN, Cui Y, Klaassen CD, Zhong XB. Three patterns of cytochrome P450 gene expression during liver maturation in mice. *Drug Metab Dispos* 2009;**37**:116–21.
- Holbrook AM, Pereira JA, Labiris R, McDonald H. *Systematic Overview of Warfarin and Its Drug and Food Interactions*. Arch Intern Med 2005 23;165(10):1095-106.
- Hrycay E, Bandiera S. Expression, Function and Regulation of Mouse Cytochrome P450 Enzymes: Comparison With Human Cytochrome P450 Enzymes. *Curr Drug Metab* 2010;**10**:1151–83.
- Humen A, Antoni GL De, Benyacoub J, Costas E, Cardozo MI, Kozubsky L, Saudan K, Boenzli-bruand A, Blum S, Schiffrin EJ, Pérez PF. Lactobacillus johnsonii La1 Antagonizes Giardia intestinalis In Vivo. 2005;**73**:1265–9.
- Jeon JH, Lee J, Park JH, Lee CH, Choi MK, Song IS. Effect of lactic acid bacteria on the pharmacokinetics and metabolism of ginsenosides in mice. *Pharmaceutics* 2021;**13**, DOI: 10.3390/pharmaceutics13091496.
- Karlson B, Leijd B, Hellstrom K. On the Influence of Vitamin K-rich Vegetables and Wine on the Effectiveness of Warfarin Treatment. *Acta Med Scand* 1986;**220**:347–50.
- Kim JK, Choi MS, Jeong JJ, Lim SM, Kim IS, Yoo HH, Kim DH. Effect of probiotics on pharmacokinetics of orally administered acetaminophen in mice. *Drug Metab Dispos* 2018;**46**:122–30.
- Krüger T, Oelenberg S, Kaesler N, Schurgers LJ, Van De Sandt AM, Boor P, Schlieper G, Brandenburg VM, Fekete BC, Veulemans V, Ketteler M, Vermeer C, Jahnen-Dechent W, Floege J, Westenfeld R. Warfarin induces cardiovascular damage in mice. *Arterioscler Thromb Vasc Biol* 2013;**33**:2618–24.
- Lee HJ, Zhang H, Orlovich D a., Fawcett JP. The influence of probiotic treatment on sulfasalazine metabolism in rat. *Xenobiotica* 2012;**42**:791–7.
- Li B, Li L. Enhanced Efficacy of Low-dose Lovastatin through Probiotic-Mediated Absorption : Insights from In Vitro and In Vivo Studies. 2024:1–29.
- Liu J, Cheng Y, Zhang Y, Huang S, Liu Z, Wang X. Lactobacillus rhamnosus induces CYP3A and changes the pharmacokinetics of verapamil in rats. *Toxicol Lett* 2021;**352**:46–53.
- Mackman N. Role of tissue factor in hemostasis and thrombosis. *Blood Cells, Mol Dis* 2006;**36**:104–7
- De Maré A, Opdebeeck B, Neven E, D'Haese PC, Verhulst A. Sclerostin Protects Against Vascular Calcification Development in Mice. *J Bone Miner Res* 2022;**37**:687–99.

- Michael N, Grigoryan MM, Kilday K, Sumbria RK, Vasilevko V, Ryn J van, Cribbs DH, Paganini-Hill A, Fisher MJ. Effects of dabigatran in mouse models of aging and cerebral amyloid angiopathy. *Front Neurol* 2019;**10**:1–8.
- Nair A, Jacob S. A simple practice guide for dose conversion between animals and human. *J Basic Clin Pharm* 2016;**7**:27.
- Penumarthy L, Oehme FW. Treatment and prothrombin responsed during warfarin toxicosis in rats and mice. *Toxicology*. 1978 Aug;10(4):377-401., 1978.
- Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. Mechanisms of Action of Probiotics. *Advances in Nutrition*. Vol 10. Oxford University Press, 2019, S49–66.
- Pommier F, Ackermann R, Sioufi A, Godbillon J. *Determination of Acenocoumarol in Human Plasma* by Capillary Gas Chromatography with Mass-Selective Detection., J Chromatogr B Biomed Appl. 1994 Mar 18;654(1):35-41.
- Qiao E, Ji M, Wu J, Ma R, Zhang X, He Y, Zha Q, Song X, Zhu LW, Tang J. Expression of the PXR gene in various types of cancer and drug resistance (Review). *Oncol Lett* 2013;**5**:1093–100.
- Rao L V, Okorodudu AO, Petersen JR, Elghetany MT. Stability of prothrombin time and activated partial thromboplastin time tests under different storage conditions. 2000;**300**:13–21.
- Rentsch KM, Gutteck-Amsler U, Bührer R, Fattinger KE, Vonderschmitt DJ. Sensitive stereospecific determination of acenocoumarol and phenprocoumon in plasma by high-performance liquid chromatography. *J Chromatogr B Biomed Sci Appl* 2000;**742**:131–42.
- Rumbo M, Sierro F, Debard N, Kraehenbuhl JP, Finke D. Lymphotoxin β receptor signaling induces the chemokine CCL20 in intestinal epithelium. *Gastroenterology* 2004;**127**:213–23.
- Saghir M, Al-Hassan F, Saeed Ali Al-Salahi O. Optimization of the Storage Conditions for Coagulation Screening Tests Optimization of the Storage Conditions for Coagulation Screening Tests. *J Coll Physicians Surg* 2012;**22**.
- Sinegre T, Talon L, Sapin AF, Lebreton A. Effect of tube filling on plasma freezing for coagulation testing. *Res Pract Thromb Haemost* 2023;**7**, DOI: 10.1016/j.rpth.2023.100092.
- Sousa T, Paterson R, Moore V, Carlsson A, Abrahamsson B, Basit AW. The gastrointestinal microbiota as a site for the biotransformation of drugs. *Int J Pharm* 2008;**363**:1–25.
- Stolz L, Derouiche A, Devraj K, Weber F, Brunkhorst R, Foerch C. Anticoagulation with warfarin and rivaroxaban ameliorates experimental autoimmune encephalomyelitis. *J Neuroinflammation* 2017;**14**, DOI: 10.1186/s12974-017-0926-2.
- Szymanowski F. Alimentos Probióticos: Influencia De Péptidos Antimicrobianos En La Interacción Con El Hospedador. *Tesis doctoral 2020. Facultad de Ciencias Exactas. Universidad Nacional de la Plata*.
- Tan CSS, Lee SWH. Warfarin and food, herbal or dietary supplement interactions: A systematic review. *Br J Clin Pharmacol* 2021;**87**:352–74.
- Tebbens JD, Azar M, Friedmann E, Lanzendörfer M, Pávek P. Mathematical models in the

- description of pregnane X receptor (PXR)-regulated cytochrome P450 enzyme induction. *Int J Mol Sci* 2018;**19**:1–25.
- Teijeiro M. Productos fermentados deshidratados probióticos para la prevención de giardiasis. Tesis Doctoral 2019 Facultad de Ciencias Exactas, Universidad Nacional de La Plata.
- Thijssen HHW. Warfarin-Based Rodenticides: Mode of Action and Mechanism of Resistance.Pest Management Science, 1995.Vol 43 73-78.
- Trejo FM, De Antoni GL, Pérez PF. Protective effect of bifidobacteria in an experimental model of Clostridium difficile associated colitis. *Journal of Dairy Research.* 2013:1–7.
- Venkatesh M, Mukherjee S, Wang H, Li H, Sun K, Benechet AP, Qiu Z, Maher L, Redinbo MR, Phillips RS, Fleet JC, Kortagere S, Mukherjee P, Fasano A, Le Ven J, Nicholson JK, Dumas ME, Khanna KM, Mani S. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and toll-like receptor 4. *Immunity* 2014;**41**:296–310.
- Warzecha Z, Sendur P, Ceranowicz P, Cieszkowski J, Dembiński M, Sendur R, Bonior J, Jaworek J, Ambroży T, Olszanecki R, Kuśnierz-Cabala B, Kaczmarzyk T, Tomaszewska R, Dembiński A. Therapeutic effect of low doses of acenocoumarol in the course of ischemia/reperfusion-induced acute pancreatitis in rats. *Int J Mol Sci* 2017;**18**, DOI: 10.3390/ijms18040882.
- Wong LT, Solomonraj G. Note Quantitation of Acenocoumarol in Plasma by Reversed-Phase High-Petiormance Liquid Chromatography. *Journal of Chromatography B: Biomedical Sciences and Applications*. Volume 163, Issue 1, May 1979. 103-108
- Yokotani K, Nakanishi T, Chiba T, Sato Y, Umegaki K. Glucosamine and Chondroitin Sulfate do not Enhance Anticoagulation Activity of Warfarin in Mice *in vivo*. *Shokuhin Eiseigaku Zasshi*. 2014;55(4):183-7., 2014.
- Zelaya H, Arellano-Arriagada L, Fukuyama K, Matsumoto K, Marranzino G, Namai F, Salva S, Alvarez S, Agüero G, Kitazawa H, Villena J. Lacticaseibacillus rhamnosus CRL1505 Peptidoglycan Modulates the Inflammation-Coagulation Response Triggered by Poly(I:C) in the Respiratory Tract. *Int J Mol Sci* 2023;**24**:1–18.
- Zelaya H, Tsukida K, Chiba E, Marranzino G, Alvarez S, Kitazawa H, Agüero G, Villena J. Immunobiotic lactobacilli reduce viral-associated pulmonary damage through the modulation of inflammation-coagulation interactions. *Int Immunopharmacol* 2014;**19**:161–73.
- Zhao Y, Lv G. Influence of temperature and storage duration on measurement of activated partial thromboplastin time, D-dimers, fibrinogen, prothrombin time and thrombin time, in citrate-anticoagulated whole blood specimens. *Int J Lab Hematol* 2013;**35**:566–70.

En la actualidad el consumo de productos a base de probióticos se encuentra en alza. Esto abre una nueva dimensión en las discusiones acerca de sus usos e interacciones con otros componentes de los alimentos así como también con drogas que se consuman por vía oral y con las mismas bacterias residentes de la microbiota intestinal, así como las células de dicho entorno. La ingesta concomitante de alimentos y medicamentos puede afectar profundamente la farmacocinética de las drogas, poniendo en juego la toxicidad y seguridad de la farmacoterapia (Wilkinson, Ilhan and Herbst-Kralovetz 2018; Koziolek *et al.* 2019).

Ciertas drogas, como la ciclosporina y nifedipina, ya han sido ampliamente estudiadas por sus interacciones con componentes de los alimentos (Koziolek *et al.* 2019). En el caso de los anticoagulantes orales, y principalmente los antagonistas de la vitamina K, también se reconocen componentes de algunos alimentos que pueden actuar en detrimento de su funcionalidad lo cual es advertido a los pacientes a la hora de comenzar un tratamiento. Entre los alimentos más destacados se encuentran las verduras de hoja verde como la espinaca o el brócoli por su alto contenido de vitamina K. También se recomienda moderar la ingesta de alcohol (Holbrook *et al.* 2005; Ge, Zhang and Zuo 2014; Tan and Lee 2021). En contraparte, los anticoagulantes orales directos como el rivaroxabán y dabigatrán, que actúan inhibiendo algún factor específico de la cascada de coagulación, presentan menor cantidad de este tipo de interacciones, lo cual favorece la elección de estos fármacos en la actualidad (Vranckx, Valgimigli and Heidbuchel 2018). En la Argentina, sin embargo, los anticoagulantes directos tienen un bajo nivel de prescripción, siendo el acenocumarol el fármaco de elección en estos tratamientos.

En el presente trabajo se han evaluado en profundidad varios de los aspectos vinculados a la relación entre el acenocumarol y bacterias probióticas, dos del género *Bifidobacterium* y una del género *Lactobacillus*. Además, se delinearon algunos aspectos de la interacción con dos anticoagulantes directos, dabigatrán y rivaroxabán.

Realizando un recorrido de los resultados presentados, en una primera instancia se evaluó lo que sucedía *in vitro* al poner en contacto a estas cepas con las drogas. Para el caso del acenocumarol se pudo evidenciar que las tres bacterias en estudio eran capaces de modificar la molécula, lo cual fue determinado por HPLC y por FTIR. Esta biomodificación no sólo generó una disminución de la concentración de la droga, sino también la aparición de nuevas moléculas evidenciadas por la presencia de nuevos picos en el análisis por HPLC para ambas bifidobacterias. En cuanto a la actividad de las cepas sobre el dabigatrán también se observó que se generaban cambios en los espectros obtenidos por FTIR para la cepa CIDCA 5317 y ATCC 314 pero no así para la cepa CIDCA 5310. Por último, para el rivaroxabán se realizaron ensayos funcionales, evaluando el tiempo de protrombina. Aquí

se advirtió que la incubación de las bacterias con la droga no generaba modificaciones en la capacidad anticoagulante de la misma. Estos resultados en conjunto ponen de manifiesto que las bacterias presentan un comportamiento variable frente a las moléculas anticoagulantes. Esta característica se vio reforzada a lo largo del trabajo de tesis.

Respecto al acenocumarol, se continuó en la búsqueda de mecanismos que permitiesen explicar la biomodificación y ver si el efecto era extrapolable a otros modelos de estudio. Se planteó como posibilidad que las bacterias estuviesen liberando enzimas al medio de cultivo durante su crecimiento que pudiesen modificar la molécula de AC. Para eso se decidió evaluar el efecto de suspensiones bacterianas luego de la eliminación del medio de cultivo. Se observó, que las cepas CIDCA 5310 y CIDCA 5317 eran capaces de disminuir la concentración de droga luego de 1 h de incubación pero no así la cepa ATCC 314. Sin embargo, en comparación con la disminución observada en condiciones de cultivo en medio MRS, ésta fue mucho menor. Más aún, luego de la lisis celular todas las cepas presentaron una disminución significativa del AC. Este descenso se correlacionaba además con el tiempo de sonicación. Por último, el agregado de un inhibidor de proteasa previo a la sonicación de las bacterias condujo a valores de AC no detectables por HPLC para todas las cepas en estudio. De todo esto se concluyó que, en la biomodificación de la droga, podrían estar interviniendo dos tipos de enzimas; aquellas con localización intracelular que se liberen durante el proceso de lisis y/o bien que sean exocelulares, y aumente su accesibilidad durante los procesos de lavado y sonicación. Ya se han descripto una variedad de enzimas tanto con localización intracelular como exocelular en una gran cantidad de géneros bacterianos. Podemos destacar la presencia de proteasas de pared en bacterias como pseudomonas, estreptococos y lactobacilos. En este sentido las proteasas asociadas a pared pueden cumplir roles tanto en la invasión durante la infección como en la evasión del sistema inmune del huésped para el caso de las bacterias patógenas, mientras que en el caso de los lactobacilos parecerían estar asociadas a procesos metabólicos de obtención de energía (Kojic et al. 1991; Heywood and Lamont 2020; McKenna et al. 2022). Con respecto a enzimas intracelulares bacterianas, muchas han sido descriptas inclusive en su relación con el metabolismo de fármacos, dentro de las cuales se encuentran esterasas, deacetilasas, reductasas e hidrolasas (Fritsch et al. 2017; Guo et al. 2017; Zimmermann et al. 2019). Sun y colaboradores analizaron varios fármacos dentro de los que se encontraban citostáticos, psicotrópicos y analgésicos, como posibles blancos de enzimas bacterianas presentes en la microbiota intestinal (Sun, Chen and Shen 2019). Además, con respecto a moléculas utilizadas como laxantes, como la lactulosa, detallan a las especies B. bifidum y L. acidophilus como responsables de su conversión enzimática a fructosa y galactosa (Sun, Chen and Shen 2019). Estos compuestos además funcionan como prebióticos.

Los microorganismos no solo tienen la capacidad de modificar las moléculas de fármacos, sino que también intervienen en la degradación de ingredientes alimentarios y pueden interactuar con componentes del medio que los rodea. En este sentido, y situándonos en el ambiente intestinal, la alteración de estos componentes puede impactar en parámetros farmacocinéticos de los medicamentos como por ejemplo la absorción, que en el caso de las drogas de clase II como el acenocumarol se encuentra determinada por la disolución. La información aportada por los ensayos de disolución de los comprimidos de AC fue muy valiosa tanto por el uso de la formulación comercial del medicamento como por la simulación de un medio intestinal post-prandial. Es importante mencionar que, hasta el momento de la redacción de este trabajo, no se han encontrado estudios realizados con medio Fessif biomodificado por bacterias probióticas. Además, la elección del medio postprandial se realizó en concordancia con la hipótesis propuesta en esta tesis acerca de la ingesta concomitante de medicamentos con probióticos. En este sentido se planteó que la modificación del medio por parte de las bacterias podría impactar en la disolución de los comprimidos de la droga. Este efecto fue observado solamente para la cepa CIDCA 5310 que demostró que al biomodificar el medio Fessif, generaba una disminución de la disolución de la droga. Esto resulta interesante por dos motivos: se muestra un efecto marcado dependiente de la cepa en estudio y muestra la importancia de las modificaciones del entorno producidas por las bacterias que a su vez impactan sobre la solubilidad. Dentro de estos componentes presentes en la bilis, las sales biliares ya se han reportado como sustratos de varias enzimas bacterianas, lo que nos permite postularlas como posibles candidatos de componentes que pueden ser modificados por las bacterias (Begley, Gahan and Hill 2005; Begley, Hill and Gahan 2006; Ridlon et al. 2016; Wise and Cummings 2023). Nuestros resultados facultan a teorizar que la cepa CIDCA 5310 impacta negativamente sobre la capacidad de disolución del medio Fessif por su capacidad de alterar las sales biliares, explicándose esto por la función de estos componentes en la solubilización de compuestos lipofílicos, como el acenocumarol. Este efecto se alinea con resultados obtenidos en nuestro grupo de trabajo donde se determinó que tanto la cepa CIDCA 5310 como CIDCA 5317 son capaces de deconjugar taurocolato, lo que evidencia actividad bilis hidrolasa. Esta enzima, entre otras, podría ser la encargada de la modificación de la bilis en el medio Fessif, disminuyendo así su capacidad de disolución. Más aún, nuestros resultados se encuentran en concordancia con lo hallado en bibliografía para otros compuestos donde se veía afectada la disolución de los mismos si se variaba el pool de ácidos biliares presentes en el medio (Enright et al. 2017).

Para estudiar el transporte de compuestos a través del epitelio intestinal, las células Caco-2 constituyen el modelo de elección por su semejanza anatómica y funcional con los enterocitos del intestino delgado. A los largo de los años se han utilizado para predecir el mecanismo de transporte de varias moléculas, con una buena correlación con lo que

sucede en el humano, a la vez que permitieron realizar estudios preliminares de drogas en desarrollo identificando, por ejemplo, potenciales problemas de absorción (Artursson, Palm and Luthman 2012; Zhang *et al.* 2013; Espana, Couturier and Prouillac 2017; Postal *et al.* 2021).

Los ensayos realizados con células epiteliales Caco-2/TC7 facilitaron una indagación más profunda sobre la interacción bacteria-droga, analizándose el transporte de AC a través de la monocapa celular y la internalización de la droga en los enterocitos. Con respecto al transporte se observó que la concentración de AC encontrada en la compartimento basolateral luego de la incubación era similar para todos los grupos en estudio pero que en el compartimento apical, la cepa CIDCA 5310 generaba una disminución significativa de la concentración de la droga. Para intentar explicar este efecto se analizó lo que sucedía con respecto a la internalización de la droga, observándose que, nuevamente, para todos los grupos en estudio, la cantidad de AC intracelular durante el tiempo de incubación era muy baja en comparación con lo remanente en la fracción extracelular. Sin embargo, en la fracción extracelular nuevamente la cepa CIDCA 5310 generaba una disminución muy marcada de AC en comparación con las otras cepas. De estos ensayos se extrajeron varias conclusiones importantes que permitieron refinar el modelo de interacción planteado. Una vez más, el efecto es dependiente de la cepa en estudio, siendo la cepa CIDCA 5310 la responsable de las diferencias observadas en estos ensayos. Continuando, la interpretación de los efectos asociados a la presencia de la cepa CIDCA 5310 podrían indicar la capacidad de estas bacterias de modificar la respuesta de las células epiteliales generando una liberación de componentes intracelulares capaces de alterar a la molécula de AC, además de reforzar resultados anteriores sobre la capacidad propia de las bacterias de biomodificar la droga. Además, estudios previos de nuestro grupo de trabajo demostraron la capacidad de la cepa CIDCA 5310 de adherir a células Caco-2, comportamiento ausente en la cepa CIDCA 5317 (Pérez et al. 1998), lo que refuerza la interacción diferencial de las bacterias con las células del epitelio intestinal. Sin embargo, nuestros resultados demuestran que este efecto sobre las células no compromete la función barrera de la monocapa, si bien podría alterar la dinámica de las uniones intercelulares como describen varios autores (Guandalini 2002; Plaza-Diaz et al. 2019; Ahmadi et al. 2020; Rose et al. 2021).

Por otro lado, el estudio de la expresión relativa de isoformas del citocromo P450 nos permite obtener información acerca de los procesos involucrados en la metabolización de la droga por parte de las células y como éstos se pueden ver influidos por la presencia de bacterias probióticas en el medio. Aquí pudimos concluir que la expresión de la isoforma 3a4 se ve inducida por la cepa ATCC 314 generando una marcada tendencia al aumento en muestras donde, además, se encuentra presente la droga. Esto se torna relevante ya que

el efecto sobre la expresión de estos genes es, nuevamente, dependiente de la cepa en estudio y además, para los lactobacilos esta modificación de la expresión no se observa si no se encuentra el AC presente. Estos resultados se alinean con estudios de otros autores sobre la capacidad de los probióticos de modificar la expresión de citocromos en células intestinales (Elefterios and Bezirtzoglou 2012; Banoth *et al.* 2020; Liu *et al.* 2021). Se observa, además, que para las cepas de bifidobacterias solas o con la droga la expresión de este citocromo es baja, si bien hay un leve aumento en el caso de la cepa CIDCA 5317, que no resulta significativo. Esto permite pensar que el efecto observado para la cepa CIDCA 5310 sobre la concentración de AC no involucraría a esta isoforma del citocromo P450. Por último, la falta de detección de la isoforma 2c9 puede explicarse por la baja cantidad de la misma presente en ciertos clones de las células Caco-2 con respecto a la isoforma 3a4 (Elefterios and Bezirtzoglou 2012).

El estudio del proteoma de las cepas incubadas con AC, reveló información significativa sobre los posibles mecanismos puestos en juego por las bacterias in vitro en presencia de la droga. En el caso de las bifidobacterias las proteínas que resaltaron por su aumento en la expresión fueron aquellas de la familia de los transportadores tipo ABC. Estos se encuentran involucrados en el eflujo activo de moléculas del interior celular. Sumado a esto, también vale mencionar la sobreexpresión de enzimas hidrolíticas. En conjunto, estos resultados permiten delinear un modelo de interacción donde la droga es capaz de ingresar a las bacterias por mecanismos pasivos, modificada en su interior y luego eliminada de la célula por los transportadores antes mencionados. En el caso de la cepa de lactobacilos, se halló que las bacterias sobreexpresaban sólo una proteína, la proteína de adhesión MUB. Esto se encuentra relacionado con lo obtenido en los estudios con células Caco2/TC7 en la medida del TEER, donde esta cepa aumentaba la resistencia, permitiendo hipotetizar que este aumento se debía a una mayor adherencia de bacterias a la monocapa. Además, se encontró que la expresión de otra proteína de membrana, PBP, estaba disminuida. Estos hallazgos se tornan relevantes por cuanto demuestran la capacidad del AC del alterar las proteínas de superficie de esta bacteria lo que podría alterar su funcionalidad, por ejemplo, en la adhesión al epitelio intestinal. Este punto será retomado más adelante.

En conjunto los resultados dan cuenta de varias cuestiones que podrían ser resueltas a través de la implementación de un modelo *in vivo* para poder evaluar el efecto en un sistema que integre, además de las interacciones entre los microorganismos y la droga, las múltiples interrelaciones que se dan en un modelo en mamíferos, como los ratones.

En este sentido cabe mencionar que se refinó el modelo murino de anticoagulación contemplando las diversas variables que influyen en la medida de un parámetro tan

sensible como el tiempo de protrombina, obteniendo así resultados con alta reproducibilidad que reflejaban los tratamientos realizados. Nuestros estudios fueron realizados con un esquema de dosis de AC de 2 mg/kg el primer día seguido de dos dosis diarias consecutivas de 1 mg/kg. Esto, en humanos, representaría una dosis equivalente de 9,8 mg y 4,9 mg respectivamente para una persona de 60 kg. En la evaluación del tiempo de protrombina de ratones bajo este esquema de dosificación, se logró un aumento significativo del tiempo de protrombina comparado con los valores obtenidos para ratones no anticoagulados.

En el modelo de ratón anticoagulado, la administración de la cepa ATCC 314 modificó los TP, los cuales fueron similares a los de los animales que no habían recibido tratamiento anticoagulante. En contraste, las cepas CIDCA 5310 y CIDCA 5317 no afectaron los valores de TP de los ratones anticoagulados. Además, los valores obtenidos para el tiempo de protrombina se condicen con la concentración de AC en plasma. Para el caso del grupo control anticoagulado, CIDCA 5310 y CIDCA 5317, las concentraciones de droga medida en plasma fueron mayores que para el caso de la cepa ATCC 314. Este efecto resulta sumamente importante ya que exhibe, por primera vez, la capacidad del microorganismo *L. acidophilus* de alterar el efecto farmacológico del acenocumarol.

Al estudiar la expresión de dos isoformas del citocromo P450 en hígado, para el caso del citocromo 2c29, se aprecia un aumento en el caso de las muestras del grupo ATCC 314+AC así como para el grupo CIDCA 5310+AC. Para la isoforma 3a11, sin embargo, no se observan estas diferencias. Esto resulta sumamente interesante ya que enfatiza la importancia de la dinámica de la interacción entre bacterias y el anticoagulante, que incluye las enzimas encargadas del metabolismo de la droga.

En el presente trabajo de tesis se demuestra que todas las cepas probióticas utilizadas en este estudio tienen la capacidad de modificar la molécula de AC *in vitro*. Esta biomodificación disminuiría su concentración generando a la vez, nuevos metabolitos. Asimismo, la responsabilidad de esta biomodificación podría adjudicarse a enzimas intracelulares, como hidrolasas, o asociadas a la envoltura celular, y el transporte a través del epitelio intestinal no parece estar alterado. Con respecto a la cepa CIDCA 5310, esta parece presentar características diferentes al resto en cuanto al amplio espectro de efectos distintivos que produce. Aquí mencionamos la modificación de la disolución de los comprimidos de AC y la disminución de la concentración de la droga en un entorno con las células epiteliales Caco-2/TC7. Resultan interesantes los resultados obtenidos *in vivo*, donde se observa que los ratones a los cuales se les administró la cepa CIDCA 5310 en conjunto con el AC, no presentaron alteraciones del TP con respecto a los valores control,

sugiriendo que *in vivo* intervienen otros factores, además de la biomodificación de la droga.

Lo más interesante se observó en relación a la cepa de lactobacilos ATCC 314, donde si bien se observaron efectos *in vitro* de esta cepa sobre la molécula de AC, éstos no fueron tan amplios como por ejemplo, para la cepa CIDCA 5310. Sin embargo, la administración de la cepa a los animales en conjunto con la droga, generó un descenso del TP, dando lugar a valores semejantes a los de ratones no anticoagulados. Al momento de la redacción de este trabajo, no se encuentran reportes previos de interacción entre este microorganismo y anticoagulantes orales.

Teniendo en cuenta todos los resultados obtenidos en este trabajo, se postulan los mecanismos que se detallan a continuación.

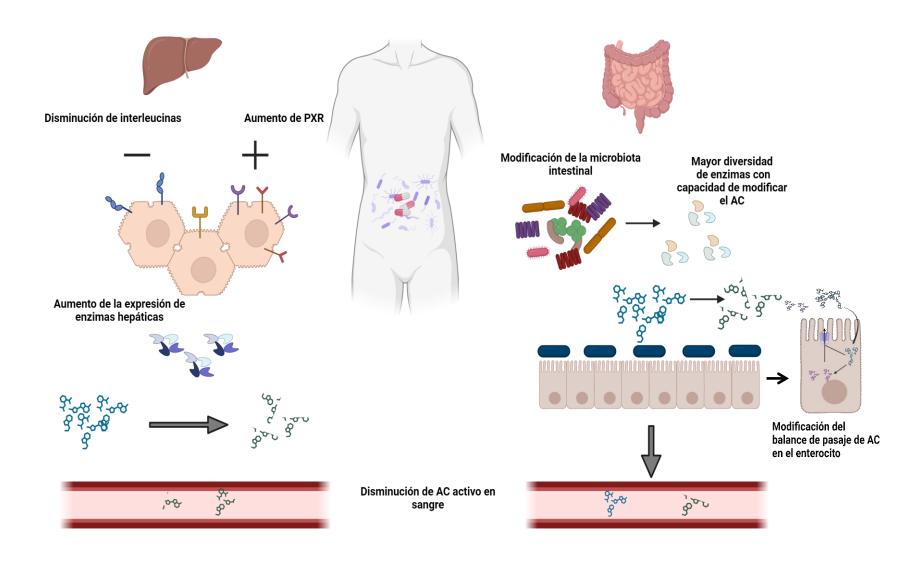
Modulación de la microbiota

Es sabido que dentro de los efectos ejercidos por los microorganismos probióticos se encuentra el de la modulación de la microbiota (Plaza-Diaz et al. 2019; El-Baz et al. 2021, 2023). En este sentido se encuentra descripto, además, que la administración de probióticos, como L. acidophilus y B. bifidum, en un modelo murino, modifica tanto la diversidad como la abundancia relativa de las bacterias presentes en el tracto gastrointestinal (Kim et al. 2018; Mendes et al. 2018). La modificación de la diversidad, genera a su vez una modificación en la variedad y cantidad de enzimas en el ambiente intestinal, así como de metabolitos devenidos de la actividad bacteriana. Entonces, se plantean aquí dos escenarios posibles. En primera medida, la cepa ATCC 314 podría generar un impacto en la microbiota intestinal de los ratones promoviendo la proliferación de cepas cuya carga enzimática impacte sobre la molécula de acenocumarol. En este sentido, aumentaría la biomodificación de la droga en el lumen intestinal, así como también se podría ver modificado el balance del movimiento de moléculas de AC a través del enterocito, generando que la concentración de acenocumarol efectiva que llegue a circulación sea menor, explicando el descenso observado de la actividad anticoagulante. En un segundo modelo, la modificación de la microbiota generaría una mayor variedad de metabolitos, como por ejemplo, ácidos biliares secundarios, que provoquen un aumento de la activación de PXR. Este receptor activado, presente tanto en hígado como en intestino, generaría una mayor activación de enzimas del citocromo P450, como se evidencia para la cepa ATCC 314, produciendo finalmente una mayor metabolización del AC a nivel intestinal y una disminución de la concentración plasmática.

A su vez, esto nos permitiría explicar la razón por la cual en los ensayos *in vitro* no se observan efectos significativos asociados a esta cepa de manera individual, ya que ejercería su efecto modulando el crecimiento de otras bacterias.

Regulación de la actividad hepática

En los modelos anteriores se planteó la posible acción de los microorganismos a nivel intestinal. En esta aproximación se propone una modificación a nivel hepático, lo que también influiría en la farmacocinética del AC explicando el descenso de su actividad. Los microorganismos probióticos tienen la capacidad de modular el sistema inmune, alterando la expresión de citoquinas y factores relacionados con el estado inflamatorio (El-Baz et al. 2021, 2023; Mishra et al. 2023). En este sentido, cepas de lactobacilos han sido estudiadas en la enfermedad inflamatoria hepática asociada al consumo de alcohol, encontrándose que éstas tenían la capacidad de disminuir la expresión de TNF-α, citoquinas proinflamatorias y proteínas inflamatorias de macrófagos (MIP-1 α, MIP-3 α, MCP-1), principales proteínas inflamatorias en el hígado (El-Baz et al. 2023; Mishra et al. 2023). A su vez, la expresión de citoquinas se encuentra estrechamente relacionada con la expresión de citocromos (de Jong et al. 2020). Este segundo modelo entonces, se propone que la cepa ATCC 314 tiene la capacidad de generar un efecto antiinflamatorio modificando el balance de citoquinas, lo que generaría un efecto potenciador en la expresión de citocromos en el hígado, como se observa para la isoforma 2c29. Además como ya se encuentra demostrado en nuestro grupo de trabajo, el AC tiene capacidad de modular la respuesta en un contexto inflamatorio (Assad et al. 2023), lo que reforzaría este supuesto. Entonces, el aumento de la expresión de enzimas pertenecientes a la familia del citocromo P450 hepático, generaría un incremento de la metabolización del acenocumarol, alterando su farmacocinética y disminuyendo la concentración de la forma activa en el organismo de una manera más rápida. Retomando lo planteado en el modelo anterior, otro mecanismo por el cual podría verse aumentado el metabolismo hepático de la droga es por la activación de los receptores PXR en hígado, lo que aumentaría la expresión de citocromos, como la isoforma 2c29.

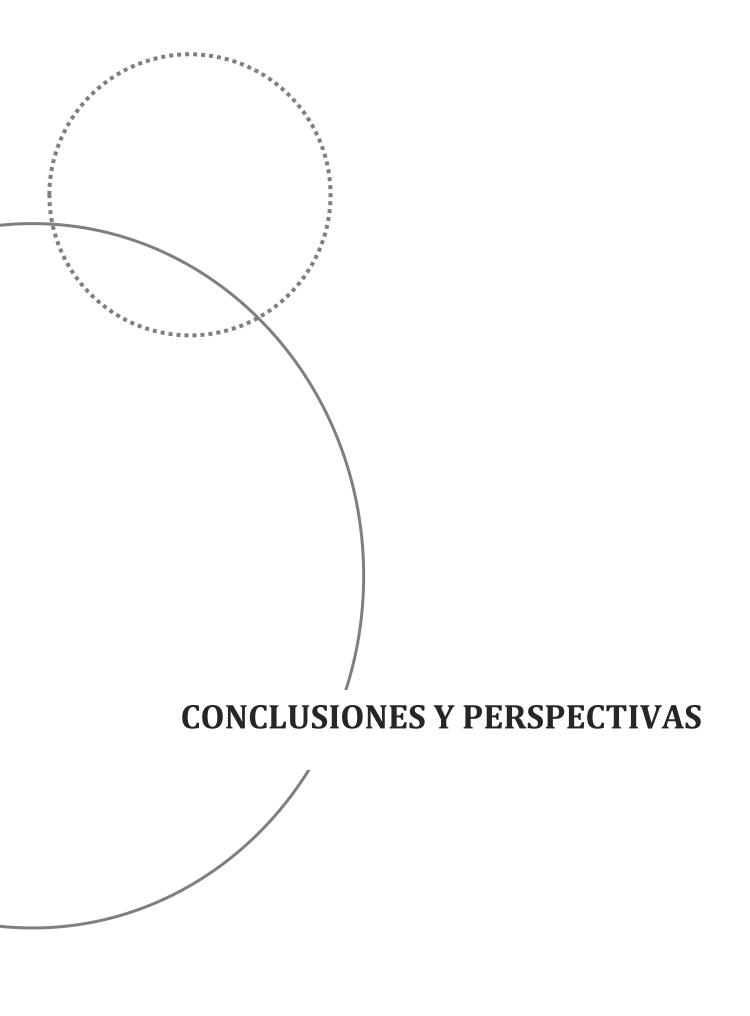

Cabe resaltar que, los mecanismos propuestos pueden darse en simultáneo siendo el efecto final observado la suma de estos procesos.

En conclusión, nuestro trabajo demuestra la validez de la hipótesis planteada que sostiene que la administración de probióticos en forma conjunta con medicación anticoagulante podría dar lugar a cambios en los efectos de la droga.

En la figura que se observa a continuación se resumen los modelos planteados donde en todos los casos, finalmente, se obtiene una menor concentración de AC activa en plasma, disminuyendo su actividad anticoagulante.

Impacto en el METABOLISMO

Impacto en la ABSORCIÓN



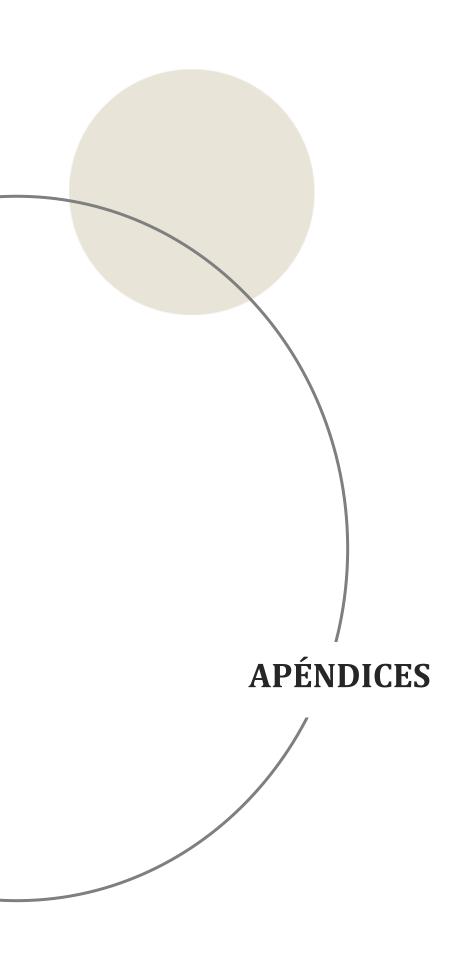
Bibliografía

- Ahmadi S, Wang S, Nagpal R, Wang B, Jain S, Razazan A, Mishra SP, Zhu X, Wang Z, Kavanagh K, Yadav H. A human-origin probiotic cocktail ameliorates aging-related leaky gut and inflammation via modulating the microbiota/taurine/tight junction axis. *JCI Insight* 2020;**5**, DOI: 10.1172/jci.insight.132055.
- Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. *Adv Drug Deliv Rev* 2012;**64**:280–9.
- Assad SE. Probióticos basados en bifidobacterias : interacción con células fagocíticas y acenocumarol. *Tesis doctoral. Facultad de Ciencias Exactas, Universidad Nacional de La Plata 2019*.
- Assad SE, Fragomeno M, Rumbo M, Minnaard J, Pérez PF. The immunomodulating effect of bifidobacteria is modified by the anticoagulant acenocoumarol. *Food Biosci* 2023;**52**, DOI: 10.1016/j.fbio.2023.102473.
- Banoth S, Tangutur AD, Anthappagudem A, Ramaiah J, Bhukya B. Cloning and in vivo metabolizing activity study of CYP3A4 on amiodarone drug residues: A possible probiotic and therapeutic option. *Biomed Pharmacother* 2020;**127**, DOI: 10.1016/j.biopha.2020.110128.
- Begley M, Gahan CGM, Hill C. The interaction between bacteria and bile. *FEMS Microbiol Rev* 2005;**29**:625–51.
- Begley M, Hill C, Gahan CGM. Bile salt hydrolase activity in probiotics. *Appl Environ Microbiol* 2006;**72**:1729–38.
- El-Baz AM, El-Ganiny AM, Hellal D, Anwer HM, El-Aziz HAA, Tharwat IE, El-Adawy MA, Hellal SEDM, Mohamed MTA, Azb TM, Elshafaey HM, Shalata ARA, Elmeligi SM, Abdelbary NH, El-kott AF, Al-Saeed FA, Salem ET, El-Sokkary MMA, Shata A *et al.* Valuable effects of lactobacillus and citicoline on steatohepatitis: role of Nrf2/HO-1 and gut microbiota. *AMB Express* 2023;13, DOI: 10.1186/s13568-023-01561-8.
- El-Baz AM, Shata A, Hassan HM, El-Sokkary MMA, Khodir AE. The therapeutic role of lactobacillus and montelukast in combination with metformin in diabetes mellitus complications through modulation of gut microbiota and suppression of oxidative stress. *Int Immunopharmacol* 2021;**96**:107757.
- Elefterios E, Bezirtzoglou V. Intestinal cytochromes P450 regulating the intestinal microbiota and its probiotic profile. *Microb Ecol Health Dis* 2012;**23**:1–10.
- Enright EF, Joyce SA, Gahan CGM, Griffin BT. Impact of gut microbiota-mediated bile acid metabolism on the solubilization capacity of bile salt micelles and drug solubility. *Mol Pharm* 2017;**14**:1251–63.
- Espana B, Couturier S, Prouillac C. Role of ABC transporters in trans-epithelial transport of vitamin K antagonists. *Biopharm Drug Dispos* 2017;**38**:20–32.

- Fritsch C, Jänsch A, Ehrmann MA, Toelstede S, Vogel RF. Characterization of Cinnamoyl Esterases from Different Lactobacilli and Bifidobacteria. *Curr Microbiol* 2017;**74**:247–56.
- Ge B, Zhang Z, Zuo Z. Updates on the clinical evidenced herb-warfarin interactions. *Evidence-based Complement Altern Med* 2014;**2014**, DOI: 10.1155/2014/957362.
- Guandalini S. Use of Lactobacillus-GG in Paediatric Crohn's Disease. Dig and Liver Disease 2002; 34: 63-65. 2002.
- Guo Q, Li S, Xie Y, Zhang Q, Liu M, Xu Z, Sun H, Yang Y. The NAD+-dependent deacetylase, Bifidobacterium longum Sir2 in response to oxidative stress by deacetylating FOXO3a and SigH (σH) in Bifidobacterium longum and HEK293T cells respectively. *Free Radic Biol Med* 2017;**108**:929–39.
- Heywood A, Lamont IL. Cell envelope proteases and peptidases of Pseudomonas aeruginosa: Multiple roles, multiple mechanisms. *FEMS Microbiol Rev* 2020;**44**:857–73.
- Holbrook AM, Pereira JA, Labiris R, McDonald H. *Systematic Overview of Warfarin and Its Drug and Food Interactions*. Arch Int Med 2005; 165: 1096-106, 2005.
- de Jong LM, Jiskoot W, Swen JJ, Manson ML. Distinct effects of inflammation on cytochrome P450 regulation and drug metabolism: Lessons from experimental models and a potential role for pharmacogenetics. *Genes (Basel)* 2020;**11**:1–24.
- Kim JK, Choi MS, Jeong JJ, Lim SM, Kim IS, Yoo HH, Kim DH. Effect of probiotics on pharmacokinetics of orally administered acetaminophen in mice. *Drug Metab Dispos* 2018;**46**:122–30.
- Kojic M, Fira D, Banina A, Topisirovic L. Characterization of the cell wall-bound proteinase of Lactobacillus casei HN14. *Appl Environ Microbiol* 1991;**57**:1753–7.
- Koziolek M, Alcaro S, Augustijns P, Basit AW, Grimm M, Hens B, Hoad CL, Jedamzik P, Madla CM, Maliepaard M, Marciani L, Maruca A, Parrott N, Pávek P, Porter CJH, Reppas C, van Riet-Nales D, Rubbens J, Statelova M *et al.* The mechanisms of pharmacokinetic food-drug interactions A perspective from the UNGAP group. *Eur J Pharm Sci* 2019, DOI: 10.1016/j.ejps.2019.04.003.
- Liu J, Cheng Y, Zhang Y, Huang S, Liu Z, Wang X. Lactobacillus rhamnosus induces CYP3A and changes the pharmacokinetics of verapamil in rats. *Toxicol Lett* 2021;**352**:46–53.
- McKenna S, Huse KK, Giblin S, Pearson M, Shibar MSM Al, Sriskandan S, Matthews S, Pease JE. The Role of Streptococcal Cell-Envelope Proteases in Bacterial Evasion of the Innate Immune System. *J Innate Immun* 2022;**14**:69–88.
- Mendes MCS, Paulino DSM, Brambilla SR, Camargo JA, Persinoti GF, Carvalheira JBC. Microbiota modification by probiotic supplementation reduces colitis associated colon cancer in mice. *World J Gastroenterol* 2018;**24**:1995–2008.
- Mishra G, Singh P, Molla M, Yimer YS, Dinda SC, Chandra P, Singh BK, Dagnew SB, Assefa AN, Ewunetie A. Harnessing the potential of probiotics in the treatment of alcoholic liver disorders. *Front Pharmacol* 2023;**14**, DOI: 10.3389/fphar.2023.1212742.
- Pérez PF, Minnaard J, Disalvo EA, De Antoni GL. Surface properties of bifidobacterial strains of

- human origin. Appl Environ Microbiol 1998;64:21-6.
- Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. Mechanisms of Action of Probiotics. *Advances in Nutrition*. Vol 10. Oxford University Press, 2019, S49–66.
- Postal BG, Aguanno D, Thenet S, Carrière V. Rapid Evaluation of Intestinal Paracellular Permeability Using the Human Enterocytic-Like Caco-2/TC7 Cell Line. *Methods in Molecular Biology*. Vol 2367. Humana Press Inc., 2021, 13–26.
- Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB. Consequences of bile salt biotransformations by intestinal bacteria. *Gut Microbes* 2016;**7**:22–39.
- Rose EC, Odle J, Blikslager AT, Ziegler AL. Probiotics, prebiotics and epithelial tight junctions: A promising approach to modulate intestinal barrier function. *Int J Mol Sci* 2021;**22**, DOI: 10.3390/ijms22136729.
- Singh KS, Kumar S, Mohanty AK, Grover S, Kaushik JK. Mechanistic insights into the host-microbe interaction and pathogen exclusion mediated by the Mucus-binding protein of Lactobacillus plantarum. *Sci Rep* 2018;8:2–11.
- Sun C, Chen L, Shen Z. Mechanisms of gastrointestinal microflora on drug metabolism in clinical practice. *Saudi Pharm J* 2019;**27**:1146–56.
- Tan CSS, Lee SWH. Warfarin and food, herbal or dietary supplement interactions: A systematic review. *Br J Clin Pharmacol* 2021;**87**:352–74.
- Vranckx P, Valgimigli M, Heidbuchel H. The significance of drug-drug and drug-food interactions of oral anticoagulation. *Arrhythmia Electrophysiol Rev* 2018;**7**:55–61.
- Wilkinson EM, Ilhan ZE, Herbst-Kralovetz MM. Microbiota—drug interactions: Impact on metabolism and efficacy of therapeutics. *Maturitas* 2018;**112**:53–63.
- Wise JL, Cummings BP. The 7- α -dehydroxylation pathway: An integral component of gut bacterial bile acid metabolism and potential therapeutic target. *Front Microbiol* 2023;**13**, DOI: 10.3389/fmicb.2022.1093420.
- Zhang X, Song J, Shi X, Miao S, Li Y, Wen A. Absorption and metabolism characteristics of rutin in caco-2 cells. *Sci World J* 2013;**2013**, DOI: 10.1155/2013/382350.
- Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. *Nature* 2019;**570**:462–7.

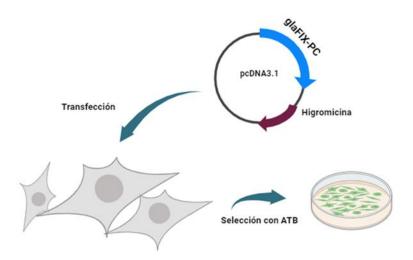
CONCLUSIONES


- Las bacterias probióticas en estudio fueron capaces de modificar la molécula de acenocumarol *in vitro*.
- La modificación de la molécula de acenocumarol puede ser atribuida a la participación de enzimas intracelulares bacterianas.
- Los efectos antes mencionados no serían generales para todos los anticoagulantes.
- La cepa CIDCA 5310 produce cambios en el entorno que afectan la disolución de la droga.
- La interacción bacteria-enterocito modifica el ciclo del AC entre la cara apical y basolateral de las células intestinales.
- Los resultados obtenidos no permiten descartar una influencia de las bacterias sobre la expresión de citocromos en un modelo *in vitro* de células epiteliales.
- En el modelo murino, la cepa ATCC 314 disminuyó la concentración de AC en plasma y el tiempo de protrombina.

Dado el efecto de la cepa ATCC 314 sobre los valores de coagulación, se evidencia que la capacidad de modificar los efectos de los anticoagulantes *in vivo*, involucraría no solamente la participación de las características evaluadas *in vitro* en el presente trabajo, sino que también serían relevantes otros factores que deben ser considerados.

Los resultados de este estudio son altamente significativos para individuos bajo tratamiento anticoagulante ya que, ante situaciones de dificultad de ajuste de dosis, el consumo de alimentos a base de probióticos debe ser incluido en la anamnesis.

PERSPECTIVAS

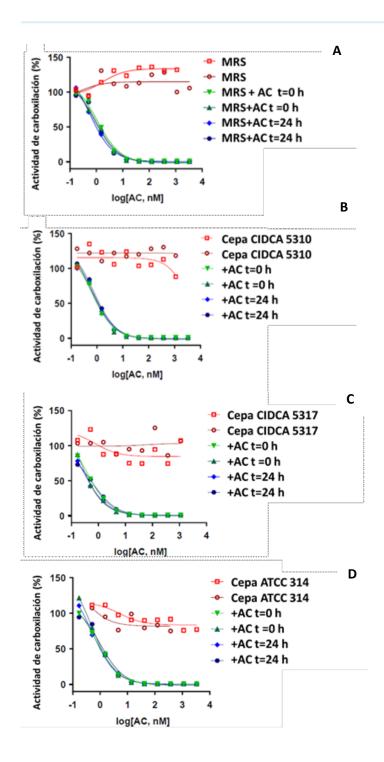

- Evaluar si el efecto *in vivo* de la cepa ATCC 314 sobre la actividad anticoagulante del acenocumarol se extiende a otros anticoagulantes.
- Estudiar los mecanismos subyacentes en el efecto encontrado in vivo:
 - o Efecto de las cepas administradas sobre la microbiota intestinal.
 - Efecto de la dotación enzimática de la microbiota sobre los anticoagulantes.
 - o Estudio del estado inflamatorio y la participación de PXR.
 - o Balance de sales biliares.
- Evaluar el tiempo de persistencia del efecto de las cepas sobre la coagulación.
- Indagar acerca de la participación de pequeñas secuencias nucleoproteicas regulatorias que puedan intervenir en la interacción bacteria-droga y/o bacteria-huésped-droga.
- Estudiar la modulación de la expresión y actividad de enzimas hepáticas en cultivos de organoides.
- Determinar el transporte de drogas utilizando modelos celulares incluidos en plataformas de microfluídica u organoides intestinales.

Apéndice - Capítulo 1

Ensayos funcionales para el acenocumarol

De manera adicional, en este capítulo se utilizaron células de riñón humanas para la realización de un ensayo de actividad de VKOR, diana del acenocumarol, en colaboración con el departamento de Biología de la Universidad de Carolina del Norte (UNC at Chapel Hill, EEUU). Este ensayo fue desarrollado por los investigadores Stafford y Tie, de dicha universidad (Tie and Stafford 2017; Chen *et al.* 2018) y consiste en el uso de la línea celular HEK293 modificada genéticamente con una construcción FIXgla-PC. La construcción contiene al dominio gla del factor IX de la cascada de coagulación, susceptible a carboxilación, intercambiado por el dominio gla de la proteína C, que será la reportera. El proceso de obtención de esta línea se esquematiza en la figura suplementaria 1.1 (S.1.1). Sí estas células son incubadas en presencia de vitamina K, el dominio gla será carboxilado. El método detecta por ELISA, mediante un anticuerpo monoclonal específico, la cantidad de proteína reportera expresada (Tie and Stafford 2017).

Figura S.1.1. Esquematización del proceso de obtención de células HEK293 que expresan la proteína recombinante glaFIX-PC desarrollado por Tie y colaboradores (Tie and Stafford 2017).

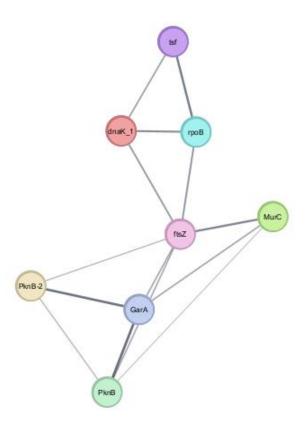

Brevemente, las bacterias fueron incubadas con 0,16 mg/ml de AC 24 h a 37 °C en anaerobiosis. Luego fueron centrifugadas 5 min a 3550 g y los sobrenadantes se distribuyeron en botellas de cultivo celular de 25 cm2 (NUNC, Thermo Fisher Scientific), para ser liofilizadas durante 48 h (equipo LA-B4-C, RIFICOR, Buenos Aires, Argentina). Se

agregaron controles de muestras del medio MRS solo ó con el agregado de AC 0,16 mg/ml a tiempo 0 h y luego de 24 h de incubación.

Las muestras fueron almacenadas a -20 °C hasta su envío a UNC para la realización del ensayo de actividad de VKOR. Para comenzar con la experiencia, en una primera instancia, las muestras liofilizadas fueron suspendidas en 5 ml de DMEM y luego el AC fue extraído con tolueno según el protocolo de Rentsch y colaboradores (Rentsch et al. 2000). El AC obtenido se disolvió en 1,5 ml de medio de cultivo conteniendo 5 μ M de vitamina K epóxido. Teniendo en cuenta los valores iniciales del cultivo y la eficiencia de la extracción, se realizaron diferentes diluciones de las muestras.

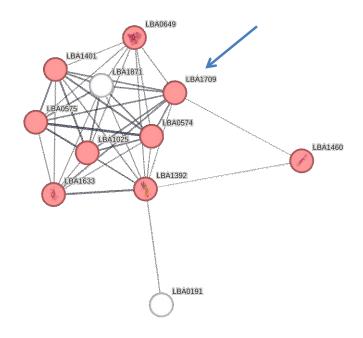
Se cultivaron las células HEK293/FIXgla-PC en placas de 96 pocillos durante 24 h y luego el medio fue reemplazado con las diferentes muestras de AC diluido obtenidas previamente. La cantidad de proteína reportera carboxilada fue medida por ELISA luego de 24 h de incubación.

Como se puede observar en la figura S.1.1, en el gráfico A correspondiente a los controles del medio MRS, se genera un 100 % de carboxilación como es esperado, mientras que en los controles de MRS+AC, tanto a tiempo 0 h como luego de 24 h de incubación, la actividad enzimática cae abruptamente hasta llegar a valores nulos de porcentaje de actividad para concentraciones superiores a 0,07 nM de AC.


Figura S.1.2. Actividad de carboxilación (expresada como %) de la enzima VKOR en células HEK293 incubadas con las muestras de AC extraído de los cultivos de las cepas con AC a tiempo 0 h, 24 h. A) MRS B) Cepa CIDCA 5310 C) Cepa CIDCA 5317 y D) Cepa ATCC 314. En todos los casos se incluyen los controles correspondientes sin AC. Se muestran dos curvas por muestra, correspondientes a duplicados biológicos.

Este mismo comportamiento es advertido para las cepas CIDCA 5310, CIDCA 5317 y ATCC 314 (Figura S.1.2 B, C y D, respectivamente). En primera instancia, es importante destacar que los cultivos de las cepas con anticoagulante como los controles de MRS, mostraron mantener la actividad enzimática en el 100%.

Por otro lado, en el caso de las muestras obtenidas luego de la incubación durante 24 h, el AC extraído no generó modificaciones en la actividad de carboxilación comparadas con aquellas muestras a las que se les agrego AC a tiempo 0 h (Figura S.1.2). Esto puede ser observado para las tres cepas en estudio.


Como conclusión, si bien no se observaron diferencias de las curvas obtenidas con el AC agregado a tiempo 0 h comparadas con las obtenidas luego de la incubación con las cepas, no es posible descartar que los metabolitos surgidos de la biomodificación no presenten una alteración en su actividad anticoagulante. Esto se debe a que el ensayo puede detectar moléculas que presenten una diferencia mayor a tres veces en su actividad sobre VKOR, por lo que los metabolitos surgidos de la biomodificación deberían ser todos inactivos sin dejar rastro de la molécula original, lo cual no parece ser compatible con nuestros resultados.

Apéndice - Capítulo 4

Código STRING	Descripción
ftsZ	Cell division protein FtsZ
tsf	Elongation factor Ts; Associates with the EF-Tu
GarA	FHA domain-containing protein
гроВ	DNA-directed RNA polymerase subunit beta
PknB	Putative serine/threonine-protein kinase
MurC	UDP-N-acetylmuramate-L-alanine ligase
PknB-2	Serine threonine protein kinase
dnaK_1	Chaperone protein DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family

Figura S4.1. Mapa de interacciones generado de manera individual para la proteína conteniendo dominio *SET and RING*. Se anexa una tabla con los códigos y descripciones correspondientes

Código STRING	Descripción
LBA1709	Mucus binding protein Mub
LBA0649	Myosin-crossreactive antigen
LBA1401	Peroxidase
LBA1871	Neopullulanase
LBA0575	ABC transporter ATP-binding and permease protein
LBA1025	Oxidoreductase aldo-keto reductase family
LBA0574	ABC transporter ATP-binding and permease protein
LBA1633	Surface protein
LBA1392	Mucus bindin protein precursor Mub
LBA1460	Putative mucus binding protein precursor
LBA0191	Putative fibronectin domain

Figura S4.2. Mapa de interacciones pormenorizado obtenido para la proteína MUB, sobreexpresada en la cepa ATCC 314 en presencia de AC. La flecha señala a la proteína en cuestión. En **rojo** se identifican proteínas que presentan dominio de unión a mucina. Se anexa una tabla con los códigos y descripciones correspondientes.

Tabla S4.1. Proteinas totales identificadas para la cepa **CIDCA 5310**. Se visualizan además los valores obtenidos para -log p y el *fold change*. Las siglas NaN significan *Not a number*. Se encuentran sombreadas las proteínas sub y sobreexpresadas identificadas.

Código	Descripción	-Log valor p	Fold change
E4V9W0	Transaldolase	0,00605928	0,00484562
E4VAH2	Formate acetyltransferase	0,0601854	-0,0348641
E4V970	Probable phosphoketolase	0,690946	-0,262457
E4V8L7	NAD-dependent glyceraldehyde-3-phosphate dehydrogenase	0,717307	-0,247356
E4V9V9	transketolase	0,470963	0,168539
E4V8S9	Chaperonin GroEL	0,0360032	0,0363754
E4VAV0	Elongation factor Tu	0,179071	-0,0808735
E4V903	Enolase	0,356432	-0,0894982
E4V8P1	ABC transporter, substrate-binding protein, family 5	2,96777	0,341904
E4V7X4	Glucose-6-phosphate isomerase	0,0780867	-0,0653671
E4V9Z2	ABC transporter, solute-binding protein	0,796441	-0,443104
E4V9X0	Phosphoglycerate kinase	0,0618813	-0,0408487
E4V933	30S ribosomal protein S1	0,0754014	-0,0230338
E4V9Y3	UDP-glucose 4-epimerase	0,340655	-0,144523
E4VAV1	Elongation factor G	0,188352	0,0334714
E4V7L7	PTS system, N-acetylglucosamine-specific IIBC component	0,0545756	0,0184059
E4V938	Pyruvate kinase	0,0995112	-0,0262594
E4V883	Long Rib domain-containing protein	0,0118779	-0,0149218
E4VAZ6	Chaperone protein DnaK	0,751451	0,408161
E4V7P0	F5/8 type C domain protein	0,675318	0,592512
E4VBF4	MaoC-like protein	0,935979	0,480162
E4V958	Acetate kinase	0,147899	-0,0612501
E4VBS2	Phosphoglucomutase, alpha-D-glucose phosphate-specific	0,270055	0,0615088
E4V9D4	Large ribosomal subunit protein bL25	1,356	0,218451
E4V8B5	Cell wall synthesis protein Wag31	0,0584129	0,0568886
E4V8A7	LPXTG-motif cell wall anchor domain protein	0,31299	0,224293
E4VC37	Inosine-5'-monophosphate dehydrogenase	0,425862	-0,159753
E4V8X9	Glutamine synthetase	0,975711	-0,272392
E4V839	DNA-directed RNA polymerase subunit beta'	0,223367	-0,0809867
E4V8J5	Glucosamine-6-phosphate deaminase	0,201598	-0,104255
E4VBN3	Small ribosomal subunit protein uS3	0,276429	0,132451
E4V7F7	formatetetrahydrofolate ligase	0,864095	-0,158874
E4VBS0	F5/8 type C domain protein	0,155799	0,137378
E4VBY2	Lactaldehyde reductase	1,3386	0,319996
E4VB61	Phosphoenolpyruvate-protein phosphotransferase	1,26078	0,391891
E4VAS3	Ribosome hibernation promoting factor	0,899977	-0,386073
E4VAS2	Protein translocase subunit SecA	0,225108	0,0890048
E4VBE4	ATP synthase subunit beta	1,70986	0,457337
E4VC95	ABC transporter, ATP-binding protein	0,416496	-0,070967
E4VA02	Elongation factor Ts	0,025621	-0,00764179

E4VAM8	Alpha-1,4 glucan phosphorylase	1,90969	0,226884
E4VBU6	2,3-bisphosphoglycerate-dependent phosphoglycerate mutase	0,47631	-0,175762
E4V7F4	LPXTG-motif cell wall anchor domain protein	0,0595759	0,07536
E4V8G9	L-lactate dehydrogenase	3,63713	0,619937
E4V999	Small ribosomal subunit protein uS4	0,609376	0,175728
E4V7B5	Ketol-acid reductoisomerase (NADP(+))	1,43989	0,730198
E4VBE2	ATP synthase subunit alpha	1,92048	0,44702
E4VCD0	Glutamate dehydrogenase	0,862603	0,475397
E4V838	DNA-directed RNA polymerase subunit beta	0,0653865	0,0333579
E4VBM3	Aldehyde-alcohol dehydrogenase	2,45263	-0,974621
E4VBN0	Large ribosomal subunit protein uL2	1,35427	0,346354
E4V7L1	1,3-beta-galactosyl-N-acetylhexosamine phosphorylase	1,06201	-0,219564
E4V9N2	Aspartate carbamoyltransferase	0,668004	0,468524
E4VBN9	Large ribosomal subunit protein uL5	1,26186	0,359567
E4VBJ6	Large ribosomal subunit protein uL10	1,42964	0,500998
E4VAG8	Trigger factor	0,310387	0,154842
E4V826	Galactokinase	2,27213	0,309412
E4V7P9	Large ribosomal subunit protein bL9	0,786277	0,438788
E4VA03	Small ribosomal subunit protein uS2	0,528122	0,158999
E4VBZ7	Conserved repeat protein	0,263657	0,319425
E4VBF7	Hyaluronoglucosaminidase	0,0887338	0,117365
E4V8R4	DNA-binding protein HB1	1,44806	0,604425
E4VBV5	Universal stress family protein	0,468925	-0,292546
E4VBM8	Large ribosomal subunit protein uL4	0,146631	0,0861251
E4V7K0	Large ribosomal subunit protein uL11	1,71365	0,453499
E4V859	Aminopeptidase N	0,654767	-0,284348
E4VBT6	6-phosphogluconate dehydrogenase, decarboxylating	0,143829	-0,0576499
E4VBQ3	DNA-directed RNA polymerase subunit alpha	0,779446	0,150048
E4VBN2	Large ribosomal subunit protein uL22	0,808378	0,338758
E4VCE8	Phosphoenolpyruvate carboxylase	3,23177	-0,449004
E4VAU4	Carbamoyl-phosphate synthase large chain	1,01437	-0,219159
E4V8U3	AspartatetRNA(Asp/Asn) ligase	0,194069	0,066542
E4V7R4	Chaperone protein ClpB	0,762648	0,744099
E4V9T9	Bifunctional purine biosynthesis protein PurH	0,214189	-0,0512899
E4VBG1	Polyribonucleotide nucleotidyltransferase	0,427479	0,150836
E4V7Z0	Large ribosomal subunit protein bL19	1,05354	0,408586
E4VBH8	Aminopeptidase	0,848267	0,165178
E4V969	GMP synthase [glutamine-hydrolyzing]	0,404022	-0,128638
E4V9B4	CTP synthase	0,254204	-0,0821953
E4V9C1	Glucose-1-phosphate adenylyltransferase	0,22633	-0,0548337
E4V7F6	Dipeptidase	0,201801	-0,104075

E4V8T7	Hemolysin B	1,54103	-0,419512
E4V7L8	Homoserine dehydrogenase	0,717523	0,181388
E4VC64	F5/8 type C domain protein	0,0579707	0,10567
E4VBJ7	Large ribosomal subunit protein bL12	0,130417	0,0503454
E4VAV2	Small ribosomal subunit protein uS7	1,08742	0,354978
E4V9A4	AlaninetRNA ligase	0,636977	0,14233
E4V926	1,4-alpha-glucan branching enzyme GlgB	1,11038	-0,324258
E4VBH7	Cell division protein	0,623796	0,186012
E4V825	UDP-glucosehexose-1-phosphate uridylyltransferase	0,224946	0,126696
E4V8K1	Aminopeptidase P domain protein	0,073375	0,0410989
E4VBR8	Ribose-5-phosphate isomerase A	1,01184	0,23759
E4VBB5	Glutamyl-tRNA(Gln) amidotransferase subunit A	0,410662	-0,146997
E4V7K1	Large ribosomal subunit protein uL1	1,36291	0,347539
E4VBS9	SerinetRNA ligase	1,06362	-0,214007
E4V8U1	DUF349 domain-containing protein	1,18155	0,266917
E4VBB6	Aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B	1,85084	-0,135734
E4V7U8	Small ribosomal subunit protein bS16	1,27892	0,552004
E4V862	Phosphoglucosamine mutase	1,33844	0,311486
E4V8P0	Putative phosphonate C-P lyase system protein PhnK	0,785889	0,182446
E4VBQ5	LPXTG-motif cell wall anchor domain protein	0,259972	0,417946
E4VA20	LeucinetRNA ligase	0,813849	-0,177492
E4VBK6	Co-chaperonin GroES	1,09885	0,501521
E4VAW0	Phosphoribosylformylglycinamidine synthase	0,170685	-0,0317167
E4V9C9	AMP-binding enzyme	2,42759	0,564947
	O-acetylhomoserine aminocarboxypropyltransferase/cysteine		
E4VAF0	synthase	0,59532	-0,175563
E4V8B1	Cell division protein FtsZ	0,120727	0,0326258
E4V9M8	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase	0,134382	-0,0937316
E4V8A9	Putative glycinetRNA ligase	0,102815	0,0222381
E4VBM0	Small ribosomal subunit protein uS9	1,24157	0,285331
E4VC46	Peptidase family M13	1,64871	-0,382607
E4VAV9	Phosphoribosylaminoimidazole-succinocarboxamide synthase	0,696809	0,264737
E4V8U2	HistidinetRNA ligase	2,46107	0,32636
E4VC59	SPFH/Band 7/PHB domain protein	0,217163	0,218697
E4VBL9	Large ribosomal subunit protein uL13	1,30008	0,423222
E4VBR1	Transcription termination/antitermination protein NusA	0,462697	0,188427
E4V8R6	Putative adenylosuccinate lyase	0,447816	-0,164146
A5A2I5	Beta-galactosidase	0,298732	0,0987527
E4VBF2	biotin carboxylase	0,784228	0,529385
E4V8A5	Multifunctional fusion protein	0,0367754	-0,0310815
E4VBP4	Small ribosomal subunit protein uS5	0,430288	0,185915
	<u>'</u>		·

E4V8J6	N-acetylglucosamine-6-phosphate deacetylase	0,786895	-0,14334
E4V9Y9	1,3-beta-galactosyl-N-acetylhexosamine phosphorylase	1,21839	-0,48393
E4VBP2	Large ribosomal subunit protein uL6	0,880589	0,254905
E4V8J1	Kinase, PfkB family	0,666065	-0,648798
E4VCC2	DNA gyrase subunit A	0,260899	0,13285
E4VBQ1	Small ribosomal subunit protein uS13	0,762883	0,392578
E4V7I2	GlutamatetRNA ligase	0,237367	-0,0977615
E4VB09	MethioninetRNA ligase	0,301418	0,117916
E4VBC5	ValinetRNA ligase	0,00297313	-0,00132434
E4VB32	Polyphosphate kinase	0,138913	-0,0793327
E4V8M2	Large ribosomal subunit protein bL20	1,04815	0,621661
E4V9Z9	Uridylate kinase	0,885669	0,1837
E4VA81	Argininosuccinate lyase	0,353255	-0,16855
E4VCD4	Glycosyl hydrolase family 20, catalytic domain protein	0,227916	0,0562407
E4V8P2	Aminopeptidase	0,796952	-0,204185
E4V9D0	Putative NAD(P)(+) transhydrogenase (AB-specific), alpha subunit	1,15301	-0,164259
E4VC44	ProlinetRNA ligase	0,932547	-0,3518
E4V8V9	Polyphosphateglucose phosphotransferase	1,78587	0,586613
E4VAX0	Phosphoribosylamineglycine ligase	0,965473	-0,286294
E4VBQ7	UDP-N-acetylmuramate dehydrogenase	1,31676	0,493522
E4VA07	IMP dehydrogenase family protein	0,705605	-0,195441
E4V7N3	Aminotransferase	0,0766434	-0,0148497
E4VBP7	Protein translocase subunit SecY	0,0489956	0,0111958
E4VBE3	ATP synthase gamma chain	1,98067	0,476379
E4V7T5	Kinase, PfkB family	1,17645	-0,713927
E4VBD2	Alpha-1,4-glucan:maltose-1-phosphate maltosyltransferase	0,135764	0,0376453
E4VA99	PhenylalaninetRNA ligase beta subunit	0,245186	-0,118887
E4V959	phosphate acetyltransferase	1,45699	0,382645
E4VBQ2	Small ribosomal subunit protein uS11	0,383826	0,882984
E4V7M8	Large ribosomal subunit protein bL21	0,929569	0,598693
E4VBR2	Translation initiation factor IF-2	0,133561	0,0452423
E4V9Z8	Ribosome-recycling factor	0,13888	0,141609
E4VBU8	Phosphate-specific transport system accessory protein PhoU	0,569644	0,375899
E4V9V1	ThreoninetRNA ligase	0,0168985	-0,0100206
E4V8N2	50S ribosomal subunit assembly factor BipA	0,234394	0,0958454
E4VCD9	Ferritin-like protein	0,0977399	-0,178987
E4VBS1	Pyridine nucleotide-disulfide oxidoreductase	0,734528	-0,408266
E4V7Z4	AMP-binding enzyme	1,00855	0,728355
E4VBN7	Large ribosomal subunit protein uL14	0,898577	0,621713
E4V8F4	Histidinol dehydrogenase	1,09529	0,449416
E4VBJ9	Helicase	0,109337	0,036533

E4VC56	NADH oxidase	0,0173294	0,0153165
E4VC62	IsoleucinetRNA ligase	0,501579	0,18357
E4V9N8	Orotate phosphoribosyltransferase	0,721274	0,378272
E4VBM9	Large ribosomal subunit protein uL23	0,508477	0,305381
E4V8P9	Aconitate hydratase	0,437025	0,218574
E4V939	Hydrolase, NUDIX family	0,0451515	-0,0205579
E4V9Y5	Putative mucin-desulfating sulfatase	0,188238	-0,128576
E4V822	Oxidoreductase; FAD/FDM binding protein	0,195952	-0,0744597
E4V7A8	Adenylosuccinate synthetase	0,53373	0,360177
E4V7R8	Aminotransferase, class I/II	0,63503	-0,242086
E4VBQ4	Large ribosomal subunit protein bL17	0,577863	0,483066
E4VBW3	ABC transporter, ATP-binding protein	0,315561	-0,205618
E4V9X5	UvrABC system protein A	0,183959	-0,174945
E4VBE0	ATP synthase subunit b	3,58619	1,08354
E4VAU5	Carbamoyl-phosphate synthase small chain	0,226998	-0,09981
E4VBM7	Large ribosomal subunit protein uL3	0,0166532	0,0111599
E4VA59	Ribose-phosphate pyrophosphokinase	0,039878	-0,0111969
E4VBP1	Small ribosomal subunit protein uS8	0,955489	0,39931
E4V858	Ribonuclease J	0,0758428	-0,0397091
E4VBE1	ATP synthase subunit delta	2,41158	0,915204
E4V9B5	FeS assembly protein SufB	0,750148	-0,477622
E4V8E4	Oleate hydratase	1,25451	0,425757
E4VBF3	Carboxyl transferase domain protein	0,726659	0,55445
E4VC92	LPXTG-motif cell wall anchor domain protein	1,0368	0,384672
E4V8I2	UDP-N-acetylmuramoylalanineD-glutamate ligase	1,28138	-0,141404
E4VAD5	Ribosome-binding ATPase YchF	0,0238231	-0,0126454
E4VBP3	Large ribosomal subunit protein uL18	0,231029	0,355085
E4V8I0	UDP-N-acetylmuramoyl-tripeptideD-alanyl-D-alanine ligase	0,171949	0,070319
E4VBU4	LysinetRNA ligase	0,321853	-0,143249
E4VCE4	Alkyl hydroperoxide reductase C	0,140102	-0,271861
E4V7N7	Glycerol-3-phosphate dehydrogenase [NAD(P)+]	0,0326479	-0,00732899
E4VCH2	Glucose-1-phosphate thymidylyltransferase	1,27926	0,302162
E4V9B7	FeS assembly ATPase SufC	0,363792	-0,289067
E4V7Z6	Pyridoxal 5'-phosphate synthase subunit PdxS	0,656719	-0,227391
E4V9D5	branched-chain-amino-acid transaminase	0,416199	0,168691
E4V7P8	Small ribosomal subunit protein bS18	0,665943	0,553708
E4VC48	Methionine aminopeptidase	0,38784	0,5073
E4V8Q3	S-adenosylmethionine synthase	0,0175438	-0,0109
E4VA90	Argininosuccinate synthase	0,149899	0,0999608
E4V7V3	Signal recognition particle protein	0,283172	0,102267
E4VB50	2-isopropylmalate synthase	0,119878	0,0552088

E4V7G4	NMT1/THI5-like protein	0,452885	0,22066
E4VAU7	Elongation factor P	1,46001	0,322096
E4VA78	TyrosinetRNA ligase	0,0810456	-0,0304459
E4V7X0	Nicotinate phosphoribosyltransferase	0,606074	-0,369331
E4V7J5	UDP-N-acetylglucosamine 1-carboxyvinyltransferase	1,09738	0,439342
E4VBB9	Amine oxidase domain-containing protein	1,02362	0,163584
E4V9U9	Probable transcriptional regulatory protein BBNG_00939	0,994839	0,305889
E4VBZ8	Energy-dependent translational throttle protein EttA	0,902068	0,277098
E4VC89	DUF4032 domain-containing protein	0,123406	0,0475458
E4VB00	BNR/Asp-box repeat protein	0,445313	0,478907
E4V8P4	DUF3710 domain-containing protein	2,28194	0,500471
E4V7P6	Small ribosomal subunit protein bS6	0,738458	0,419266
E4V7L5	ArgininetRNA ligase	0,687018	-0,23448
E4VAW8	Amidophosphoribosyltransferase	0,918336	-0,239686
E4V803	2,5-diketo-D-gluconic acid reductase A	0,861092	0,162521
E4VCG3	dTDP-glucose 4,6-dehydratase	0,0391115	-0,0191762
E4V9D2	NAD(P) transhydrogenase subunit beta	0,249535	0,0986225
E4VC24	Putative glucose-6-phosphate 1-epimerase	1,04519	-0,264983
E4V9E7	Glycogen synthase, Corynebacterium family	0,142527	0,0916893
E4V793	Trypsin	1,53271	0,378845
E4V925	DNA-binding response regulator MtrA	0,163553	0,0549666
Q0ZII7	Beta-galactosidase	0,639736	0,856094
E4V7B8	Beta-galactosidase	0,321387	-0,354694
E4VBW5	Efflux ABC transporter, permease protein	1,09625	-0,47526
E4V9U2	SuccinateCoA ligase [ADP-forming] subunit beta	0,470326	0,205862
E4V7N8	D-alanineD-alanine ligase	0,463725	0,176588
E4VBN6	Small ribosomal subunit protein uS17	0,431915	0,269221
E4V857	4-hydroxy-tetrahydrodipicolinate synthase	0,1941	-0,080595
E4VAV3	Small ribosomal subunit protein uS12	0,709803	0,41226
E4VCB7	Beta sliding clamp	0,0238388	0,0152265
E4V9Z0	ABC transporter, permease protein	1,16899	-0,189705
E4VC85	Putative calcium-translocating P-type ATPase, PMCA-type	0,984754	0,485245
E4V8Q1	Dihydroxy-acid dehydratase	0,0560582	0,0780261
E4VAN7	non-specific serine/threonine protein kinase	1,21039	0,273572
E4V7C6	Uracil phosphoribosyltransferase	1,54864	0,317932
E4V9E4	Glutamate synthase [NADPH], large subunit	0,0926511	0,159308
E4VB56	DNA topoisomerase 1	0,212808	-0,0883438
E4VBM6	Small ribosomal subunit protein uS10	0,489503	0,412638
E4VB72	UbiC transcription regulator-associated domain protein	0,931495	-0,545382
E4VBT3	Glucose-6-phosphate 1-dehydrogenase	0,34897	-0,155479
E4VBZ1	ATP-dependent zinc metalloprotease FtsH	0,00146033	-0,00241661

E4V8Y0	DUF4191 domain-containing protein	2,21515	0,444991
E4VBN8	Large ribosomal subunit protein uL24	0,481541	0,51353
E4V7N9	Glycerophosphodiester phosphodiesterase family protein	1,77811	0,344931
E4VAY8	Nitroreductase family protein	0,481709	-0,669903
E4VBN5	Large ribosomal subunit protein uL29	0,773853	0,332633
E4V795	Pyridine nucleotide-disulfide oxidoreductase	0,163247	-0,110063
E4V9S9	ATP phosphoribosyltransferase	0,287405	0,0850032
E4V9V0	Glycosyl hydrolase family 20, catalytic domain protein	0,212375	0,33465
E4VBD1	Inorganic pyrophosphatase	0,255593	-0,209584
E4V8Y8	UPF0182 protein BBNG_00627	0,844232	-0,218866
E4VC79	threonine ammonia-lyase	0,209853	-0,0442557
E4VB97	Signal recognition particle receptor FtsY	0,682701	-0,207751
E4VBP6	Large ribosomal subunit protein uL15	0,75594	0,816106
E4V7V7	CysteinetRNA ligase	0,0571304	0,0319939
E4VB45	Aspartate-semialdehyde dehydrogenase	1,64345	0,149429
	Alkaline phosphatase synthesis transcriptional regulatory protein		
E4V8T2	PhoP	2,06894	0,248972
E4V9Y7	ROK family protein	0,556487	-0,180129
E4V7H7	S-ribosylhomocysteine lyase	0,947372	0,397286
E4V7N5	Transcription termination/antitermination protein NusG	0,0033151	-0,000941753
E4VAA0	PhenylalaninetRNA ligase alpha subunit	0,373156	-0,133826
E4VCF3	tryptophantRNA ligase	0,0593731	-0,0364459
E4V830	UPF0210 protein BBNG_00319	0,763697	-0,0794849
E4V940	Response regulator receiver domain protein	0,131919	0,0548809
E4VAV8	Formate-dependent phosphoribosylglycinamide formyltransferase	0,946827	0,434249
E4V8Y3	Peptidase dimerization domain protein	0,494487	0,0873048
E4VAG5	ATP-dependent Clp protease proteolytic subunit	0,492719	-0,200732
E4VA10	AMP-binding enzyme	0,875351	0,279351
E4VA05	AMP-binding enzyme	0,153837	0,0582889
E4VBC0	Transcription termination factor Rho	0,243075	0,117743
E4V8L3	Aldose 1-epimerase	1,2308	0,387546
E4V7K4	Lipoprotein	0,353881	0,105849
E4VCC0	DNA gyrase subunit B	0,130783	0,0513007
E4V8T6	Universal stress family protein	0,422608	0,261817
E4V9N4	Amidohydrolase family protein	0,397514	0,327377
E4VA04	Peptide deformylase	0,446969	0,218028
E4V9R2	WYL domain-containing protein	0,626185	0,278762
E4V7U4	Putative Hsp20 family chaperone	0,611077	1,52202
E4V8Z5	NAD dependent epimerase/dehydratase family protein	0,086904	0,0356065
E4V8I5	UDP-N-acetylmuramateL-alanine ligase	0,0299048	-0,0112664
E4V8K9	UDP-N-acetylmuramoyl-L-alanyl-D-glutamate2, 6-diaminopimelate ligase	0,538632	0,159887

E4V817	3-isopropylmalate dehydrogenase	1,95102	1,00669
E4V9F1	Linear amide C-N hydrolase, choloylglycine hydrolase family protein	0,702639	-0,411249
E4VBH1	Oxidoreductase; aldo/keto reductase family protein	1,67263	0,280867
E4V9T5	Multifunctional fusion protein	0,469777	-0,211521
E4VAP1	Protein phosphatase 2C	0,600626	0,286251
E4V9S4	Oxoglutarate dehydrogenase inhibitor	0,614518	0,213516
E4V8D4	1-deoxy-D-xylulose 5-phosphate reductoisomerase	0,433473	-0,174921
E4V8C1	2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase	0,0951377	0,0684141
E4V8H4	D-3-phosphoglycerate dehydrogenase	0,288263	0,0655456
E4VBN4	Large ribosomal subunit protein uL16	0,230587	0,395262
E4V866	Aminotransferase	0,811285	0,460097
E4V7M7	S1 RNA binding domain protein	0,602819	0,278438
E4V9X1	Probable cell division protein WhiA	0,167027	0,0551817
E4VB20	Efflux ABC transporter, permease protein	0,763442	0,197341
E4VC88	RNA methyltransferase, TrmH family, group 3	0,173154	0,0686709
E4V9U1	SuccinateCoA ligase [ADP-forming] subunit alpha	0,064136	0,0224379
E4VBP8	Adenylate kinase	0,840537	0,233466
E4V7P1	Ribose-phosphate diphosphokinase	1,73569	0,596711
E4V9E1	Aminotransferase, class I/II	0,224218	-0,0864676
E4V910	Transcription elongation factor GreA	0,0460974	0,0567849
E4VAW9	Phosphoribosylformylglycinamidine cyclo-ligase	0,0503367	-0,0331612
E4VCD7	Putative sugar-specific permease, SgaT/UlaA	0,461359	0,26099
E4VCG5	dTDP-4-dehydrorhamnose reductase	0,723026	-0,230272
E4VA93	Acetylornithine aminotransferase	0,468968	-0,22175
E4V8A8	GlycinetRNA ligase (Fragment)	0,188556	-0,0555108
E4V7T6	Large ribosomal subunit protein bL28	0,275	0,47284
E4V8F6	Imidazoleglycerol-phosphate dehydratase	1,19362	0,20497
E4V8Y9	CDP-glycerol:poly(Glycerophosphate) glycerophosphotransferase	0,76385	0,834248
E4V8F5	Histidinol-phosphate aminotransferase	0,154518	0,0680329
E4V7W6	Acetolactate synthase	0,605869	0,736642
E4VA62	Gamma-glutamyl phosphate reductase	0,576284	0,059912
E4VC40	Oligoribonuclease	1,23398	0,362388
E4V7M9	Large ribosomal subunit protein bL27	0,639231	1,27539
E4VAP3	FHA domain protein	1,42846	0,504911
E4V9A2	Secreted protein	2,31855	0,478436
E4VB24	thiazole synthase	0,34029	-0,272325
E4V9T1	Ribulose-phosphate 3-epimerase	0,421708	0,117736
E4VAH4	Glutamine-dependent NAD(+) synthetase	0,0276727	0,0114621
E4VB58	DNA polymerase III, delta' subunit	0,549968	0,660925
E4V9A8	Chorismate synthase	0,0334437	-0,018812
E4VAL2	GTP diphosphokinase	0,771628	0,144437

E4V8P8	E1-E2 ATPase	0,0878166	-0,0410624
E4V8S4	ATPase family associated with various cellular activities (AAA)	0,210479	-0,0892976
E4VAR9	Acyltransferase	1,87545	0,411285
E4V7N1	GTPase obg	0,410958	-0,170535
E4V9B6	FeS assembly protein SufD	1,00735	-0,597826
E4VA63	Threonine synthase	0,193779	0,0990976
E4V7P2	Putative ATP synthase F0, A subunit	0,457776	0,23524
E4VC72	ABC transporter, substrate-binding protein, family 5	0,15436	-0,169129
E 4) (0.50	1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino]	0.54.4650	0.403603
E4V8F9	imidazole-4-carboxamide isomerase	0,514659	0,183683
E4V820	peptidoglycan glycosyltransferase	0,354702	0,270109
E4V8N8	ABC transporter, permease protein	0,418796	0,0876358
E4VBT5	6-phosphogluconolactonase	0,246011	-0,12148
E4VA08	Isocitrate dehydrogenase [NADP]	0,470017	-0,102791
E4V7K7	Sugar-binding domain protein	0,257457	0,112012
E4V8Y1	Putative dihydrolipoyl dehydrogenase	2,20771	0,474181
E4V7W2	Cell division protein	1,43725	0,645027
E4VA97	N-acetyl-gamma-glutamyl-phosphate reductase	0,551899	0,412476
E4V877	Anaerobic ribonucleoside-triphosphate reductase	0,36718	-0,982796
E4V8K6	ATP-grasp domain-containing protein	0,0831971	-0,0321854
E4V9P6	Oxidoreductase; short chain dehydrogenase/reductase family protein	0,532588	-0,246887
E4V9D9	Elongation factor 4	0,076823	0,0224314
E4VAR3	Aspartate ammonia-lyase	0,108489	-0,207794
E4V9U5	Holliday junction branch migration complex subunit RuvB	1,23531	-0,571863
E4V906	Ppx/GppA phosphatase family protein	1,58903	-0,161008
E4VCD3	Bacterial group 3 Ig-like protein	0,313816	0,657529
E4VCD3 E4V8N9	Putative oligopeptide ABC transporter, permease protein	0,313810	0,0974115
E4V9N5	Orotidine 5'-phosphate decarboxylase	0,218427	0,247575
E4V9N3	Fructose-bisphosphate aldolase	0,218427	0,247575
E4V9B8		0,288732	-0,299212
E4V9B8	Cysteine desulfurase Peptidyl-prolyl cis-trans isomerase	0,238465	-0,161437
E4V7L9	Homoserine kinase	0,602823	·
	 	-	0,199816
E4V8Z0	CDP-glycerol:poly(Glycerophosphate) glycerophosphotransferase	0,0625127	-0,09947
E4VB21	Methyl-accepting chemotaxis protein	0,589058	0,538067
E4VB19	ABC transporter, ATP-binding protein	1,50212	0,329108
E4VC98	Thioredoxin-like fold domain-containing protein	0,454314	0,185617
E4V8I4	pyrophosphoryl-undecaprenol N-acetylglucosamine transferase	0,711212	-0,0699312
E4V912	ATPase/histidine kinase/DNA gyrase B/HSP90 domain protein	0,149661	0,0597712
E4V7J3	Dihydroorotate oxidase	0,0780076	0,0814996
E4V9N7	Dihydroorotate dehydrogenase	0,995623	0,550328
E4V912 E4V7J3	ATPase/histidine kinase/DNA gyrase B/HSP90 domain protein Dihydroorotate oxidase	0,149661 0,0780076	-0,0699312 0,0597712 0,0814996

E4VAZ0	Phosphoglycerate mutase family protein	0,724845	0,491822
E4VAY5	N5-carboxyaminoimidazole ribonucleotide synthase	0,17663	-0,0759703
E4V9E5	Pyridine nucleotide-disulfide oxidoreductase	0,230436	0,661834
E4VBT0	F5/8 type C domain protein	0,0565941	-0,031865
E4VBI7	Phosphate-binding protein	1,03396	0,284818
E4V8C3	Peptide chain release factor 2	0,310728	-0,144929
E4VA76	HAD hydrolase, family IIA	0,0354173	-0,0214631
E4VAP4	Peptidase, S9A/B/C family, catalytic domain protein	1,55014	-0,327571
E4VA55	DUF304 domain-containing protein	0,225553	0,10379
E4V9Y4	Galactose-1-phosphate uridylyltransferase	0,625407	-0,440668
E4VCA8	ParB-like protein	0,785917	0,285175
E4V8K8	BioF2-like acetyltransferase domain-containing protein	0,479367	0,228546
E4VBG4	LemA family protein	0,182397	0,0813182
E4V823	Dihydroorotate oxidase	1,06996	0,319324
E4V824	Transcriptional regulator, DeoR family	0,466507	0,37309
E4V8H5	UvrD-like helicase ATP-binding domain-containing protein	0,860384	0,360052
E4VBP5	Large ribosomal subunit protein uL30	0,113345	0,2013
E4V8T4	Cold-shock DNA-binding domain protein	0,526011	-1,83898
E4VBL8	4-alpha-glucanotransferase	0,892155	0,328779
E4VBZ0	Hypoxanthine phosphoribosyltransferase	0,603404	0,0721253
E4VA77	Tetratricopeptide repeat protein	0,0885305	-0,0705935
E4V8B2	Cell division protein SepF	0,733847	0,305746
E4VBY0	UDP-glucose 4-epimerase	0,217182	0,200678
E4V8D3	DivIVA domain repeat protein	0,0498394	-0,0292724
E4VBA3	Lipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit MurT	0,518323	-0,28385
E4VCE1	CBS domain protein	0,937107	0,137554
E4V8K3	Bifunctional protein FolC	1,70996	-0,54583
E4V849	DNA 3'-5' helicase	1,55182	-1,81798
E4VA13	tRNA N6-adenosine threonylcarbamoyltransferase	0,510702	0,300378
E4V944	Glycogen debranching enzyme GlgX	1,25487	0,628517
E4V816	Peptidase, S9A/B/C family, catalytic domain protein	0,244241	0,17274
E4V863	Peptide deformylase	1,20493	0,637958
E4VAR5	RNA polymerase sigma factor SigA	0,498388	0,229521
E4VBF9	Small ribosomal subunit protein uS15	0,0498573	0,0338612
E4V8M0	Translation initiation factor IF-3	0,785949	0,550555
E4V900	Transcription-repair-coupling factor	0,410047	0,351195
E4V9Q8	Multifunctional fusion protein	0,685897	-0,418301
E4VAH5	Amidohydrolase	0,433892	-0,297861
E4V9Y2	ABC transporter, ATP-binding protein	0,00480487	0,00468604
E4V9T6	Pseudouridine synthase	0,730384	0,278032
E4V9A3	Gram-positive signal peptide protein, YSIRK family	1,4656	0,436904

E4V7M0	Nucleoside triphosphate pyrophosphatase	0,214074	0,064922
E4V792	Queuine tRNA-ribosyltransferase	0,230143	0,55957
E4V9E6	Tripartite tricarboxylate transporter TctB family protein	0,697952	0,461366
E4VB49	Ser/Thr phosphatase family protein	0,0171402	-0,0214545
E4VBQ8	Transglutaminase-like protein	1,71908	0,978911
E4V7X1	Ribonuclease PH	0,00253191	-0,00418742
E4VBV1	Phosphoserine aminotransferase	0,320628	0,21021
E4V927	CarD-like protein	0,166609	-0,0749421
E4V7H3	Putative dGTPase	1,11288	0,991611
E4V8J3	PF03932 family protein CutC	0,521122	-0,260358
E4V7H2	DNA primase	0,713883	0,426692
E4VAZ7	Protein GrpE	0,89543	-0,36427
E4V7I5	Transcriptional regulator, IcIR family, C-terminal domain protein	1,23422	0,727277
E4V8Q7	Methionyl-tRNA formyltransferase	0,631748	-0,240738
E4VA50	Pyridoxamine 5'-phosphate oxidase family protein	0,173853	0,423895
E4VCE5	Putative alkyl hydroperoxide reductase F subunit	0,549161	-0,739886
E4VAZ8	DnaJ domain protein	1,24587	1,15224
E4V9Z5	Imidazole glycerol phosphate synthase subunit HisF	1,28547	0,633337
E4VBR5	Riboflavin kinase	1,97012	0,459391
E4VA09	Periplasmic binding protein domain-containing protein	0,8263	0,228154
E4V7S3	AMP-binding enzyme	0,209431	-0,280247
E4V876	Exodeoxyribonuclease 7 large subunit	1,32576	-0,47531
E4V9N1	[glutamateammonia-ligase] adenylyltransferase	0,184846	0,0832814
E4V9A1	Phosphoglycerate mutase family protein	0,516871	-0,164735
E4V7K2	Peptidyl-prolyl cis-trans isomerase	0,2878	-0,5397
E4V8D5	4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase (flavodoxin)	0,613269	0,340467
E4V9C7	CBS domain protein	0,320655	-0,140646
E4VBZ6	Putative acyl-CoA thioesterase II	0,812549	-0,271596
E4V7I4	Ser/Thr phosphatase family protein	1,25393	0,486326
E4V7P7	Single-stranded DNA-binding protein	1,23153	0,35949
E4VB93	Dipeptidase	1,04307	-0,599911
E4V8R1	Inositol monophosphatase family protein	0,982161	0,480515
E4VAS7	Protein RecA	0,500527	0,218962
E4V7R3	FAH family protein	1,59687	0,330718
E4V9W7	L-lactate dehydrogenase	0,00886898	0,0031236
E4V8M4	Sporulation initiation inhibitor protein Soj	0,0388223	-0,0248713
E4VAL5	DUF3071 domain-containing protein	0,170986	0,0985556
E4VBZ3	Dihydropteroate synthase	0,587226	-0,248865
E4VAV5	Beta-eliminating lyase	0,193032	-0,0863091
E4V8H7	Ribosomal RNA small subunit methyltransferase H	0,837368	-0,394962
E4VA25	P-loop containing region of AAA domain-containing protein	0,272502	-0,230557

E4V8P6	TRAM domain protein	0,613129	-0,252869
E4V932	Bifunctional protein FoID	0,652808	0,200984
E4V8A2	ATPase, AAA family	0,167245	0,390256
E4VCH6	Rhamnan synthesis protein F	0,0667747	0,0734075
E4VAY6	N5-carboxyaminoimidazole ribonucleotide mutase	0,740108	0,632552
E4VBN1	Small ribosomal subunit protein uS19	0,909128	0,81439
E4V8T3	histidine kinase	0,0368972	-0,0360049
E4V8G6	Methyltransferase small domain protein	0,575232	0,289418
E4V7G7	GroES-like protein	0,555654	0,268212
E4VC53	E1-E2 ATPase	0,51858	0,301942
E4VB02	GDSL-like protein	0,0535091	0,113278
E4VC12	Glucokinase	0,209095	-0,171007
E4VC77	4-phosphoerythronate dehydrogenase	1,34862	-0,372477
E4VAH1	Pyruvate formate-lyase-activating enzyme	0,0334205	0,0310807
E4VAA2	RNA methyltransferase, TrmH family	0,431666	0,357262
E4VBR7	DUF4245 domain-containing protein	0,593091	0,561995
E4V880	Putative CoA-substrate-specific enzyme activase	0,186654	0,662073
E4V841	Uncharacterized protein	0,242436	0,167456
E4V7W7	Acetolactate synthase small subunit	0,620358	0,310342
E4VCH4	ABC transporter, ATP-binding protein	0,0693213	0,0349188
E4VCB2	Membrane protein insertase YidC	1,32028	0,838273
E4VBT4	Putative opcA protein	0,207975	0,0893272
E4VBG7	Ribonucleoside-diphosphate reductase subunit beta	0,273545	-0,893285
E4VA47	Flavodoxin-like protein	0,0872542	-0,0373222
E4V993	Xanthine phosphoribosyltransferase	0,147712	0,0959676
E4V9T4	Multifunctional fusion protein	0,0511645	0,0289353
E4V850	Acetyltransferase, GNAT family	0,255035	-0,16985
E4VC16	O-acetylhomoserine aminocarboxypropyltransferase	0,335942	0,285555
E4VAN5	Sortase family protein	0,449762	0,263995
E4VBR3	Ribosome-binding factor A	0,0305672	-0,0157735
E4VBA5	Poly(Hydroxyalcanoate) granule associated protein (Phasin)	0,820884	-0,326876
E4V893	Aminoglycoside phosphotransferase domain-containing protein	1,40731	0,435435
E4V9C8	GTPase Era	0,903972	-0,502972
E4V8E3	Putative RNA-binding protein, YhbY family	0,382009	0,436036
E4VAF3	pyridoxal kinase	1,16651	0,471189
E4VB60	Phosphocarrier, HPr family	0,528807	0,882089
E4V7Q6	Pyridoxal phosphate homeostasis protein	0,153265	0,209325
E4VB15	Probable potassium transport system protein Kup	0,405026	0,0884061
E4VBC6	ABC transporter, substrate-binding protein, family 5	1,64015	0,426997
E4VAH8	Peptidyl-prolyl cis-trans isomerase	0,0950289	0,0758141
E4VAT8	Inhibitor of apoptosis-promoting Bax1	0,0798353	0,0852016

E4V7K5	Tetratricopeptide repeat protein	0,291738	-0,182343
E4VBW1	Oxidoreductase; NAD-binding domain protein	0,964382	-0,419212
E4VB70	ABC transporter, ATP-binding protein	0,0497681	0,151632
E4V845	ATPase family associated with various cellular activities (AAA)	0,606543	-0,269492
E4V9N6	Oxidoreductase; NAD-binding domain protein	0,443448	0,445997
E4V812	NAD(+) diphosphatase	0,0151322	0,0193073
E4V8G1	Glutamine synthetase, type I	0,72154	-0,307003
E4VBY4	ATP synthase F0, A subunit	0,771606	0,540457
E4VA74	Ribosomal RNA large subunit methyltransferase J	0,958642	1,45545
E4V8R3	Proteasome accessory factor PafA	0,0368424	-0,0320287
E4V815	Phosphatidate phosphatase APP1 catalytic domain-containing protein	0,329745	0,424436
E4VBW4	Efflux ABC transporter, permease protein	1,129	-0,442909
E4V9P0	GroES-like protein	0,462567	0,2553
E4V9R1	UTPglucose-1-phosphate uridylyltransferase	0,518887	0,514063
E4VCB6	Chromosomal replication initiator protein DnaA	0,580243	0,206906
E4V8U8	Glutamate ABC transporter, ATP-binding protein GluA	0,812551	0,257825
E4V9Z1	ABC transporter, permease protein	0,212344	-0,0889271
E4VAU2	DUF262 domain-containing protein	1,49581	-0,31473
E4V7N6	Acyltransferase	0,766727	0,682621
E4VBI4	adenosylhomocysteine nucleosidase	0,911875	-0,26324
E4V819	Cyclic nucleotide-binding domain protein	0,339959	0,263576
E4V7L2	Putative endoribonuclease L-PSP	1,65674	0,391359
E4VCA3	tRNA adenylyltransferase	0,174704	-0,0413483
E4V8K5	Aspartate racemase	0,514983	0,524536
E4V994	Acyltransferase	0,124211	-0,102966
E4VA96	Arginine biosynthesis bifunctional protein ArgJ	0,539321	0,45208
E4VC49	Citrate synthase	0,111988	0,0879674
E4VBP9	Translation initiation factor IF-1	0,985606	1,10699
E4V9T3	Tryptophan synthase alpha chain	1,34689	0,428263
E4V7V9	ABC transporter, ATP-binding protein	0,0420139	0,0454702
E4V9A6	Endolytic murein transglycosylase	0,608844	0,458276
E4VCA2	Tat pathway signal sequence domain protein	0,950937	0,0993338
E4V9V7	Chaperone protein DnaJ	0,0514964	-0,046504
E4VAP2	FHA domain protein	0,578567	0,48735
E4VAL3	Deoxyuridine 5'-triphosphate nucleotidohydrolase	0,825493	0,364222
E4V8S5	Uracil-DNA glycosylase	0,428642	0,597121
E4VB88	ABC transporter, ATP-binding protein	1,00918	0,749902
E4VB51	peptidoglycan glycosyltransferase	0,0219467	-0,0157474
E4V7F2	ABC transporter, ATP-binding protein	0,24513	0,189618
E4V9T7	Transporter, major intrinsic protein (MIP) family protein	0,560972	0,999307

E4VCA9	Sporulation initiation inhibitor protein Soj	0,721734	0,238801
	Aspartate carbamoyltransferase regulatory chain, allosteric domain		
E4V9N3	protein	1,93289	0,922952
E4VB52	UDP-galactopyranose mutase	0,0544206	0,0411881
E4V7H4	Alanine racemase	1,73799	-0,454893
E4VBU2	Tetratricopeptide repeat protein	0,181916	-0,325534
E4V885	ABC transporter, ATP-binding protein	2,5348	-1,39476
E4VAE4	Hydrolase, alpha/beta domain protein	0,135345	0,0638251
E4V8Q9	AAA ATPase forming ring-shaped complexes	0,805842	0,594625
E4VCG1	Glycosyltransferase, group 2 family protein	3,20702	0,643796
E4VAU6	Transcription antitermination protein NusB	0,32399	0,253699
E4VAU3	Guanylate kinase	0,227128	-0,285926
E4VBS5	Phosphotransferase system, EIIC	0,642722	0,968227
E4VAZ3	Transcriptional regulator, LacI family	0,716881	0,241206
E4V9U3	Adenine phosphoribosyltransferase	0,0525308	0,0431644
E4V856	4-hydroxy-tetrahydrodipicolinate reductase	0,073539	-0,0313787
E4V919	Uncharacterized protein	0,269504	0,478946
E4V8G5	ATP-dependent helicase HrpA (Fragment)	0,0706779	-0,063616
E4V8J7	ABC transporter, substrate-binding protein, family 5	0,979326	-0,472627
E4V8Q6	HAD hydrolase, family IA, variant 3	0,0128241	-0,0075984
E4V7M6	Succinyl-diaminopimelate desuccinylase	0,439205	-0,600995
E4V848	PD-(D/E)XK endonuclease-like domain-containing protein	0,963087	-0,935232
E4VA22	CorA-like protein	0,159494	-0,0706197
E4V8J0	Transporter, major facilitator family protein	0,55523	-1,00142
E4V995	DNA 3'-5' helicase	0,776793	-0,829896
E4V7U7	RNA-binding protein KhpA	0,0277432	0,0194589
E4VBJ8	FHA domain protein	0,238845	0,226899
E4V9R6	Haloacid dehalogenase-like hydrolase	0,382538	0,227579
E4VBV6	OsmC-like protein	0,323628	0,314935
E4VA15	Universal bacterial protein YeaZ	1,00107	0,12871
E4V868	DUF4391 domain-containing protein	2,3621	0,463291
E4VAW5	Glyoxalase family protein	0,192759	0,272295
E4VCA0	Ribosomal RNA small subunit methyltransferase A	0,0400902	-0,0319481
E4VBY3	Glycosyltransferase, group 2 family protein	0,632362	-0,205169
E4VBA6	ABC1 family protein	0,941048	-0,701746
E4VC99	G5 domain protein	0,303723	0,179603
E4VAX1	Arylsulfatase	0,267809	-0,0563459
E4VAE6	Response regulator receiver domain protein	1,02909	-0,369503
E4V7L6	Diaminopimelate decarboxylase	0,182169	-0,0727118
E4VBG8	Ribonucleoside-diphosphate reductase	0,207415	-0,521451
E4VBH4	Copper oxidase	0,0150129	-0,00835466

E4VA58	Bifunctional protein GlmU	0,0528019	-0,0652881
E4VCE3	Carbonic anhydrase	0,379113	0,199019
E4VAE9	ABC transporter, ATP-binding protein	0,0854071	0,0932167
E4VAT3	Fic family protein	0,097219	0,0656045
E4V796	Protease HtpX homolog	0,860747	0,527613
E4VAR4	DNA topoisomerase (ATP-hydrolyzing)	0,322129	0,178489
E4VB01	BNR/Asp-box repeat protein (Fragment)	0,132198	0,343783
E4V9Z3	Anthranilate synthase component 1	0,194043	0,116262
E4VBZ2	GTP cyclohydrolase 1	0,413867	0,1969
E4VCC5	Glycosyl hydrolase, family 43	0,140794	-0,0874561
E4VAT2	FtsK/SpoIIIE family protein	0,241254	0,0877854
E4VAT4	tRNA dimethylallyltransferase	0,101748	-0,0793227
E4VB67	Membrane iron-sulfur containing protein FtrD-like domain- containing protein	0,408151	0,439609
E4VB28	Glycosyltransferase, group 2 family protein	0,143823	0,118834
E4V8Z4	2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase	0,508382	-0,146774
E4V840	FHA domain-containing protein	1,50147	0,744356
E4VBA9	RmuC domain protein	0,527103	-0,282244
E4VAR0	DNA topoisomerase (ATP-hydrolyzing)	0,17233	0,102653
E4VBA4	Lipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit GatD	0,0452682	-0,0236263
E4VB44	Aspartokinase	0,909637	0,65384
E4V8H9	UDP-N-acetylmuramyl peptide synthase	0,113276	0,0473445
E4VBL3	Succinyldiaminopimelate transaminase	0,28171	-0,209536
E4VB18	HD domain protein	2,4666	0,936192
E4V8C6	CHAP domain protein	0,601518	0,487873
E4VAQ1	Peptide methionine sulfoxide reductase MsrA	0,184742	-0,161524
E4V886	ABC transporter, ATP-binding protein	2,88441	-1,29028
E4V7G8	1-deoxy-D-xylulose-5-phosphate synthase	0,429748	-0,293444
E4V8V2	Polyphosphate:nucleotide phosphotransferase, PPK2 family	0,171459	0,303288
E4V8J2	ROK family protein	0,0137016	-0,018407
E4VB57	Thymidylate kinase	0,546155	0,191302
E4V889	Diaminopimelate epimerase	0,12977	0,047695
E4VA94	Acetylglutamate kinase	0,376083	-0,156981
E4V7E8	Oxidoreductase aldo/keto reductase family protein	0,314577	-0,119612
E4VBX9	tRNA (guanine-N(7)-)-methyltransferase	0,239465	0,253395
E4VAT6	RelA/SpoT domain protein	1,90905	0,516383
E4VA24	Serine carboxypeptidase	0,526615	-0,25834
E4VC51	Oxidoreductase aldo/keto reductase family protein	0,614354	0,215389
E4VAA7	Putative pyrimidine permease RutG	0,186113	0,0642465
E4V8W5	DNA ligase	0,587471	-0,390127
E4V9A9	Multifunctional fusion protein	0,0233706	-0,0113686

E4VCA6	Putative integral membrane protein MviN	0,184283	0,187826
E4VA92	Ornithine carbamoyltransferase	1,03571	-0,710101
E4VB59	Transcriptional regulator, LacI family	0,595193	0,325668
E4V9Q9	Carboxymuconolactone decarboxylase family protein	0,403423	0,216508
E4VAG6	ATP-dependent Clp protease proteolytic subunit	0,0275891	0,0148649
E4V8H3	Transcriptional repressor NrdR	0,533714	-0,202667
E4V9Z6	Probable dual-specificity RNA methyltransferase RlmN	0,0896172	-0,0835271
E4VA70	NAD kinase	1,02583	0,749507
E4VAC9	Cupin domain protein	0,331728	-0,979233
E4VB42	DNA polymerase III, subunit gamma and tau	0,0496965	0,0279222
E4VBJ4	BNR/Asp-box repeat protein	0,307341	-0,743042
E4V8W6	Iron-sulfur cluster carrier protein	0,107853	-0,288465
E4VC32	Peptide chain release factor 1	0,7717	-0,283038
E4V941	DNA polymerase I	0,0869606	0,0507808
E4VAN9	Putative penicillin-binding protein A	0,0961562	0,135136
E4VBL1	UDP-N-acetylenolpyruvoylglucosamine reductase	0,379175	0,227209
E4V8K7	DegT/DnrJ/EryC1/StrS aminotransferase family protein	0,197415	0,116872
E4VB66	Fe2+ transport protein	0,336741	-1,35753
E4V924	histidine kinase	0,118501	-0,0582442
E4V918	Benzoate membrane transport protein	0,412884	0,308528
E4V813	ErfK/YbiS/YcfS/YnhG	0,15009	0,13555
E4VCG2	ATP synthase F0, A subunit	0,684789	0,355624
E4V896	Putative hydrolase	0,120324	-0,0719616
E4V8G7	SET and RING associated domain-containing protein	2,97476	-2,76118
E4V8E8	2,5-diketo-D-gluconic acid reductase A	0,372316	0,453719
E4V9C5	PhoH family protein	0,725966	-0,364594
E4VBB4	Aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit C	0,6806	-1,85863
E4V8V3	DEAD/DEAH box helicase	0,147592	-0,107366
E4V807	Sugar-binding domain protein	0,216886	0,215417
E4V9G5	tRNA (adenine(58)-N(1))-methyltransferase Trml	1,36584	0,673174
E4V8C4	Cell division ATP-binding protein FtsE	0,0559662	-0,0503222
E4V8F8	Imidazole glycerol phosphate synthase subunit HisH	0,172807	-0,135226
E4VA72	TrkA N-terminal domain protein	0,113407	-0,0667949
E4V8D9	DUF1963 domain-containing protein	0,0171217	0,0209397
E4VBR4	tRNA pseudouridine synthase B	0,416065	0,230194
E4V9V2	Transporter, dicarboxylate/amino acid:cation Na+/H+ symporter family protein	0,783216	-0,650818
E4V8E1	DNA polymerase III subunit alpha	0,201705	-0,228695
E4V9Q7	HAD hydrolase, family IA, variant 3	0,32337	0,283576
E4VBD7	Homoserine	0,716365	-0,271304

E4VCA7	Thioredoxin-disulfide reductase	1,13126	-0,478211
E4VA26	DUF4194 domain-containing protein	2,57776	-0,597126
E4V7R6	HTH tetR-type domain-containing protein	0,309269	0,0792832
E4VBH6	Pyroglutamyl-peptidase I	0,0464608	-0,0172437
E4VBP0	Small ribosomal subunit protein uS14	1,07509	0,946458
E4V9T0	Phosphoribosyl-ATP pyrophosphatase	0,299113	0,308787
E4VAN3	Cell division protein CrgA	0,518746	0,960289
E4V8U9	ABC transporter glutamine-binding protein GlnH	0,916053	0,415768
E4VBS6	PRD domain protein	0,394183	1,83014
E4VBC8	Transcriptional regulatory protein, C-terminal domain protein	0,885562	-0,412233
E4V8A1	Phosphomethylpyrimidine kinase	0,167106	0,0993226
E4VAF4	succinate dehydrogenase	0,47353	-0,275773
E4V7U6	Ribosome maturation factor RimM	0,186297	-0,178997
E4VBY6	ABC transporter, ATP-binding protein	0,0579285	0,147651
E4V8B7	Pseudouridine synthase	0,513096	0,399274
E4VB27	Uncharacterized protein	0,788574	0,69069
E4VAG9	3'-5' exonuclease	0,401345	0,186704
E4VB89	ABC transporter, ATP-binding protein	0,312996	0,429647
	Cell envelope-like function transcriptional attenuator common		
E4V915	domain protein	0,149773	-0,0942739
E4V9C0	MIP18 family-like domain-containing protein	1,00047	0,632907
E4V972	TIGR00153 family protein	0,180841	-0,140225
E4VAE8	Efflux ABC transporter, permease protein	0,27106	-0,341692
E4V8A6	Hydroxyethylthiazole kinase	0,130894	-0,237435
E4V8W0	Aminotransferase, class I/II	0,260214	0,0792375
E4V937	Integral membrane protein, TerC family	0,673547	0,810959
E4VCB0	Ribosomal RNA small subunit methyltransferase G	0,409834	0,437527
E4V7Q3	MIP family channel protein	0,816938	0,515495
E4V8R0	Proteasome accessory factor PafA2	0,613793	0,798923
E4V9T2	Phosphatidylglycerolprolipoprotein diacylglyceryl transferase	0,936824	0,839772
E4V9U4	Preprotein translocase, YajC subunit	0,284937	0,180466
E4V8G0	DUF2252 domain-containing protein	0,488368	-0,16229
E4VAY9	DUF4235 domain-containing protein	0,449988	1,7749
E4V7R2	DUF4854 domain-containing protein	0,0611252	-0,262601
E4VBG5	DUF2207 domain-containing protein	0,373868	0,165615
E4V834	Putative tRNA (cytidine(34)-2'-	0,171127	-0,144897
E4VBZ4	Bifunctional folate synthesis protein	0,542697	-0,479913
E4VC93	LPXTG-motif cell wall anchor domain protein	0,838072	0,667125
E4VCH5	Glycosyltransferase, group 1 family protein	1,15197	0,48408
E4V8B6	Lipoprotein signal peptidase	0,238598	0,149227
E4VBY5	Glycosyltransferase, group 2 family protein	0,845909	-0,295322

E4V7F5	Raf-like protein	1,52625	1,14824
E4V7N2	Glutamate 5-kinase	0,790823	-0,300952
E4V9R4	DEAD/DEAH box helicase	0,310115	0,365829
E4VC03	Pyrrolidone-carboxylate peptidase	2,45249	-1,33815
E4VAL6	Type I phosphodiesterase / nucleotide pyrophosphatase	0,322439	0,22153
E4V878	Anaerobic ribonucleoside-triphosphate reductase activating protein	0,789981	-1,4509
E4VAR8	non-specific serine/threonine protein kinase	0,368173	-0,237369
E4VC78	Transcriptional regulator, Sir2 family	0,0197924	0,0129434
E4VBM1	Glycogen debranching enzyme GlgX	0,701094	0,328483
E4VBJ2	Putative permease	0,713044	1,45183
E4VAP5	YhgE/Pip domain protein	0,0584745	0,111218
E4VAC2	HTH cro/C1-type domain-containing protein	0,712162	0,37898
E4V8T1	TPM domain-containing protein	0,458498	0,429053
E4VBA2	Replicative DNA helicase	1,12171	-0,650985
E4VBB1	RNA methyltransferase, TrmH family	0,18392	-0,17515
E4V800	Transcriptional regulator, LacI family	0,23276	-0,316234
E4VAC7	DNA-binding helix-turn-helix protein	0,889863	1,01228
E4V905	Septum formation initiator family protein	0,0225819	-0,021822
E4VBR6	DNA repair protein RadA	0,504553	-0,419178
E4VC66	Sugar-binding domain protein	0,253753	0,372017
E4VA23	Phosphoglycerate mutase family protein	1,55116	-0,41014
E4V8Z6	Transport permease protein	1,61077	-0,319961
E4VAT5	tRNA-2-methylthio-N(6)-dimethylallyladenosine synthase	0,139968	0,342846
E4V7X2	dITP/XTP pyrophosphatase	0,123176	0,17558
E4VAN6	Glutamine amidotransferase, class I	0,425591	-0,153977
E4V8Q8	phosphoserine phosphatase	1,40374	-0,209429
E4VBE5	ATP synthase, delta/epsilon subunit, beta-sandwich domain protein	0,730279	0,593186
E4VBL0	Large ribosomal subunit protein bL33	0,726908	0,813763
E4VA54	Alpha amylase, catalytic domain protein	0,726962	0,257079
E4V8E7	Morphine 6-dehydrogenase	0,2294	0,221438
E4V7K3	Tat pathway signal sequence domain protein	0,0519928	0,0435427
E4VC35	Sua5/YciO/YrdC/YwlC family protein	1,0517	0,61499
E4V8Y2	DUF3043 domain-containing protein	0,231511	-0,217702
E4VBJ0	Phosphate ABC transporter, ATP-binding protein	2,02961	-0,805758
E4VA28	Probable endonuclease 4	0,284081	0,20566
E4V7I6	3-isopropylmalate dehydratase large subunit	0,540675	0,86263
E4V888	Glutamate racemase	0,486233	0,312953
E4V9V6	Fructosamine kinase	0,262065	-0,315536
E4VAS1	Anthranilate phosphoribosyltransferase	1,42472	0,554255
E4V957	3-phosphoshikimate 1-carboxyvinyltransferase	0,759394	0,492468
E4VA00	Alpha/beta hydrolase	0,281301	0,280534

E4V8V1	ABC transporter, permease protein	0,20053	0,130514
E4V881	Peptidylprolyl isomerase	0,342643	0,197921
E4V8L4	4-hydroxy-3-methylbut-2-enyl diphosphate reductase	0,262676	0,200522
E4V891	PHP domain protein	1,10147	0,528127
E4V8W1	ABC transporter, ATP-binding protein	0,843294	0,391069
E4VC83	dCTP deaminase, dUMP-forming	4,28439	0,716889
E4V9V4	PAC2 family protein	0,454048	0,568608
E4V8R5	TIGR00374 family protein	0,565294	-0,990987
E4V8C7	SsrA-binding protein	1,86497	0,574047
E4V8W4	Tetratricopeptide repeat protein	1,4104	-0,761907
E4VC57	Cystathionine beta-lyase	0,0125629	-0,0113209
E4V7W3	Putative ACR COG1399	0,677738	0,334452
E4VC31	Large ribosomal subunit protein bL31	0,544793	0,765443
E4VBB0	Orotate phosphoribosyltransferase	0,272418	0,155174
E4V887	Phospholipase, patatin family	0,0695825	-0,0397841
E4VAG3	Putative hemolysin	0,11258	-0,156475
E4VB05	Ribosomal RNA small subunit methyltransferase I	0,106246	-0,0659448
E4VA91	Arginine repressor	0,178144	0,131981
E4V810	Hydrolase, NUDIX family	0,236927	-0,191566
E4V8V0	ABC transporter, permease protein	0,779288	-0,242418
E4VAP0	Cell cycle protein, FtsW/RodA/SpoVE family	0,865032	0,392057
E4VC27	Cyclopropane-fatty-acyl-phospholipid synthase	1,84801	-1,17065
	Protein often found in actinomycetes clustered with signal peptidase		
E4VBB8	Protein often found in actinomycetes clustered with signal peptidase and/or RNaseHII	0,194741	-0,135135
E4VBB8 E4V9R3	Protein often found in actinomycetes clustered with signal peptidase and/or RNaseHII Uncharacterized protein	0,194741 0,457645	-0,135135 0,203625
E4VBB8 E4V9R3 E4V8D6	Protein often found in actinomycetes clustered with signal peptidase and/or RNaseHII Uncharacterized protein Uncharacterized protein	0,194741 0,457645 0,185079	-0,135135 0,203625 0,194593
E4VBB8 E4V9R3 E4V8D6 E4V7Z3	Protein often found in actinomycetes clustered with signal peptidase and/or RNaseHII Uncharacterized protein Uncharacterized protein Transcriptional regulator, LacI family	0,194741 0,457645 0,185079 0,941748	-0,135135 0,203625 0,194593 0,383228
E4VBB8 E4V9R3 E4V8D6 E4V7Z3 E4VAS9	Protein often found in actinomycetes clustered with signal peptidase and/or RNaseHII Uncharacterized protein Uncharacterized protein Transcriptional regulator, LacI family DNA-binding helix-turn-helix protein	0,194741 0,457645 0,185079 0,941748 0,563383	-0,135135 0,203625 0,194593 0,383228 1,0713
E4VBB8 E4V9R3 E4V8D6 E4V7Z3 E4VAS9 E4VBV7	Protein often found in actinomycetes clustered with signal peptidase and/or RNaseHII Uncharacterized protein Uncharacterized protein Transcriptional regulator, LacI family DNA-binding helix-turn-helix protein Thymidylate synthase	0,194741 0,457645 0,185079 0,941748 0,563383 0,326653	-0,135135 0,203625 0,194593 0,383228 1,0713 0,217542
E4VBB8 E4V9R3 E4V8D6 E4V7Z3 E4VAS9 E4VBV7 E4V8I6	Protein often found in actinomycetes clustered with signal peptidase and/or RNaseHII Uncharacterized protein Uncharacterized protein Transcriptional regulator, LacI family DNA-binding helix-turn-helix protein	0,194741 0,457645 0,185079 0,941748 0,563383 0,326653 0,77726	-0,135135 0,203625 0,194593 0,383228 1,0713 0,217542 0,736841
E4VBB8 E4V9R3 E4V8D6 E4V7Z3 E4VAS9 E4VBV7	Protein often found in actinomycetes clustered with signal peptidase and/or RNaseHII Uncharacterized protein Uncharacterized protein Transcriptional regulator, LacI family DNA-binding helix-turn-helix protein Thymidylate synthase POTRA domain protein FtsQ-type	0,194741 0,457645 0,185079 0,941748 0,563383 0,326653 0,77726	-0,135135 0,203625 0,194593 0,383228 1,0713 0,217542
E4VBB8 E4V9R3 E4V8D6 E4V7Z3 E4VAS9 E4VBV7 E4V8I6 E4VBC3	Protein often found in actinomycetes clustered with signal peptidase and/or RNaseHII Uncharacterized protein Uncharacterized protein Transcriptional regulator, LacI family DNA-binding helix-turn-helix protein Thymidylate synthase POTRA domain protein FtsQ-type Chorismate mutase	0,194741 0,457645 0,185079 0,941748 0,563383 0,326653 0,77726	-0,135135 0,203625 0,194593 0,383228 1,0713 0,217542 0,736841 0,110291
E4VBB8 E4V9R3 E4V8D6 E4V7Z3 E4VAS9 E4VBV7 E4V8I6 E4VBC3 E4V8Z7	Protein often found in actinomycetes clustered with signal peptidase and/or RNaseHII Uncharacterized protein Uncharacterized protein Transcriptional regulator, LacI family DNA-binding helix-turn-helix protein Thymidylate synthase POTRA domain protein FtsQ-type Chorismate mutase Putative O-antigen export system ATP-binding protein RfbB D-alanyl-D-alanine carboxypeptidase/D-alanyl-D-alanine-	0,194741 0,457645 0,185079 0,941748 0,563383 0,326653 0,77726 0,272609 0,190898	-0,135135 0,203625 0,194593 0,383228 1,0713 0,217542 0,736841 0,110291 -0,1892
E4VBB8 E4V9R3 E4V8D6 E4V7Z3 E4VAS9 E4VBV7 E4V8I6 E4VBC3 E4V8Z7	Protein often found in actinomycetes clustered with signal peptidase and/or RNaseHII Uncharacterized protein Uncharacterized protein Transcriptional regulator, LacI family DNA-binding helix-turn-helix protein Thymidylate synthase POTRA domain protein FtsQ-type Chorismate mutase Putative O-antigen export system ATP-binding protein RfbB D-alanyl-D-alanine carboxypeptidase/D-alanyl-D-alanine-endopeptidase	0,194741 0,457645 0,185079 0,941748 0,563383 0,326653 0,77726 0,272609 0,190898	-0,135135 0,203625 0,194593 0,383228 1,0713 0,217542 0,736841 0,110291 -0,1892 -0,34631
E4VBB8 E4V9R3 E4V8D6 E4V7Z3 E4VAS9 E4VBV7 E4V8I6 E4VBC3 E4VBC3 E4VBZ7	Protein often found in actinomycetes clustered with signal peptidase and/or RNaseHII Uncharacterized protein Uncharacterized protein Transcriptional regulator, LacI family DNA-binding helix-turn-helix protein Thymidylate synthase POTRA domain protein FtsQ-type Chorismate mutase Putative O-antigen export system ATP-binding protein RfbB D-alanyl-D-alanine carboxypeptidase/D-alanyl-D-alanine-endopeptidase Tail assembly chaperone	0,194741 0,457645 0,185079 0,941748 0,563383 0,326653 0,77726 0,272609 0,190898 0,387826 1,10592	-0,135135 0,203625 0,194593 0,383228 1,0713 0,217542 0,736841 0,110291 -0,1892 -0,34631 0,559491
E4VBB8 E4V9R3 E4V9R3 E4V8D6 E4V7Z3 E4VAS9 E4VBV7 E4V8I6 E4VBC3 E4V8Z7 E4VBY8 E4V7G2 E4V7G5	Protein often found in actinomycetes clustered with signal peptidase and/or RNaseHII Uncharacterized protein Uncharacterized protein Transcriptional regulator, Lacl family DNA-binding helix-turn-helix protein Thymidylate synthase POTRA domain protein FtsQ-type Chorismate mutase Putative O-antigen export system ATP-binding protein RfbB D-alanyl-D-alanine carboxypeptidase/D-alanyl-D-alanine-endopeptidase Tail assembly chaperone HAD hydrolase, family IA, variant 3	0,194741 0,457645 0,185079 0,941748 0,563383 0,326653 0,77726 0,272609 0,190898 0,387826 1,10592 0,130269	-0,135135 0,203625 0,194593 0,383228 1,0713 0,217542 0,736841 0,110291 -0,1892 -0,34631 0,559491 0,14441
E4VBB8 E4V9R3 E4V8D6 E4V7Z3 E4VAS9 E4VBV7 E4V8I6 E4VBC3 E4VBC3 E4VFC5 E4VFC5 E4VFC5 E4VFC5	Protein often found in actinomycetes clustered with signal peptidase and/or RNaseHII Uncharacterized protein Uncharacterized protein Transcriptional regulator, LacI family DNA-binding helix-turn-helix protein Thymidylate synthase POTRA domain protein FtsQ-type Chorismate mutase Putative O-antigen export system ATP-binding protein RfbB D-alanyl-D-alanine carboxypeptidase/D-alanyl-D-alanine-endopeptidase Tail assembly chaperone HAD hydrolase, family IA, variant 3 DNA repair protein RecN	0,194741 0,457645 0,185079 0,941748 0,563383 0,326653 0,77726 0,272609 0,190898 0,387826 1,10592 0,130269 0,547923	-0,135135 0,203625 0,194593 0,383228 1,0713 0,217542 0,736841 0,110291 -0,1892 -0,34631 0,559491 0,14441 -0,505095
E4VBB8 E4V9R3 E4V9R3 E4V8D6 E4V7Z3 E4VAS9 E4VBV7 E4V8I6 E4VBC3 E4V8Z7 E4VBY8 E4V7G2 E4V7G5 E4VA69 E4V7K6	Protein often found in actinomycetes clustered with signal peptidase and/or RNaseHII Uncharacterized protein Uncharacterized protein Transcriptional regulator, Lacl family DNA-binding helix-turn-helix protein Thymidylate synthase POTRA domain protein FtsQ-type Chorismate mutase Putative O-antigen export system ATP-binding protein RfbB D-alanyl-D-alanine carboxypeptidase/D-alanyl-D-alanine-endopeptidase Tail assembly chaperone HAD hydrolase, family IA, variant 3 DNA repair protein RecN CYTH domain-containing protein	0,194741 0,457645 0,185079 0,941748 0,563383 0,326653 0,77726 0,272609 0,190898 0,387826 1,10592 0,130269 0,547923 1,23936	-0,135135 0,203625 0,194593 0,383228 1,0713 0,217542 0,736841 0,110291 -0,1892 -0,34631 0,559491 0,14441 -0,505095 0,648451
E4VBB8 E4V9R3 E4V8D6 E4V7Z3 E4VAS9 E4VBV7 E4V8I6 E4VBC3 E4VBC3 E4VFC5 E4VFC6 E4VFC6 E4VFC6 E4VFC6 E4VFC6 E4VFC6 E4VFC6	Protein often found in actinomycetes clustered with signal peptidase and/or RNaseHII Uncharacterized protein Uncharacterized protein Transcriptional regulator, LacI family DNA-binding helix-turn-helix protein Thymidylate synthase POTRA domain protein FtsQ-type Chorismate mutase Putative O-antigen export system ATP-binding protein RfbB D-alanyl-D-alanine carboxypeptidase/D-alanyl-D-alanine-endopeptidase Tail assembly chaperone HAD hydrolase, family IA, variant 3 DNA repair protein RecN CYTH domain-containing protein Efflux ABC transporter, permease protein	0,194741 0,457645 0,185079 0,941748 0,563383 0,326653 0,77726 0,272609 0,190898 0,387826 1,10592 0,130269 0,547923 1,23936 0,0833452	-0,135135 0,203625 0,194593 0,383228 1,0713 0,217542 0,736841 0,110291 -0,1892 -0,34631 0,559491 0,14441 -0,505095 0,648451 0,281834

E4V8H8	Penicillin-binding protein, transpeptidase domain protein	0,260555	-0,366796
E4V9E8	ABC transporter, ATP-binding protein	0,366351	0,562269
E4V797	Divergent AAA domain protein	1,97952	0,690227
E4VB54	PA domain protein	0,12722	0,197073
E4VBU9	histidine kinase	1,18876	0,799484
E4VB46	Uncharacterized protein	1,91931	1,42186
E4V9W9	Triosephosphate isomerase	0,302918	-0,361051
E4VBB7	Acetyltransferase, GNAT family	0,223703	-0,126929
E4V882	Glutamatecysteine ligase	0,286702	-0,169453
E4V8S2	EF-hand domain-containing protein	0,0918415	-0,161424
E4VBH5	2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase	0,404754	0,52193
E4V936	UvrABC system protein B	0,278882	-0,125045
E4VA56	Phosphoglycerate mutase family protein	0,303882	-0,154197
E4VBI6	Sensory transduction protein RegX3	0,221752	0,245101
E4VB65	Iron permease FTR1 family	0,306558	1,4008
E4V9R5	RNA polymerase-binding protein RbpA	0,0643664	0,0455748
E4V9M9	Methylenetetrahydrofolate reductase	0,43945	0,764652
E4V8P3	Putative exodeoxyribonuclease III	1,53299	-0,239461
E4V8D8	Isoprenyl transferase	0,0259314	-0,0410746
E4VAK7	Type II toxin-antitoxin system PemK/MazF family toxin	0,243096	0,36638
E4VAK6	Addiction module antitoxin, RelB/DinJ family	0,717556	0,836912
E4V9U6	Holliday junction branch migration complex subunit RuvA	0,910015	-0,285385
E4V9C4	Histidine triad domain protein	0,700328	1,26483
E4VBX3	Transcriptional regulator, LacI family	0,0950308	0,117224
E4V7Y1	Magnesium-transporting ATPase, P-type 1	0,451069	-0,942256
E4VAE2	Putative L-asparaginase	0,072126	0,260326
E4V9P8	Transcriptional regulator, PadR family	1,48035	0,51849
E4V9Z7	Phosphatidate cytidylyltransferase	0,0306623	0,060761
E4VBK5	Uncharacterized protein	0,484723	0,558321
E4V9X2	Uncharacterized protein	0,870639	-0,32141
E4V7I7	3-isopropylmalate dehydratase small subunit	0,020345	-0,0166988
E4VAY4	Transcriptional regulator, Fur family	1,36099	0,951543
E4VBH3	Peptidase, U32 family	0,0906579	0,195466
E4VBI3	3-deoxy-7-phosphoheptulonate synthase	1,0993	1,3461
E4VAV6	Glycosyltransferase, group 1 family protein	1,21295	-0,273487
E4VAP6	YhgE/Pip domain protein	1,29935	-1,08526
E4VAG1	TIGR00730 family protein	0,0184055	-0,0250618
E4VAD4	Fic family protein	0,171689	-0,241814
E4VBI5	histidine kinase	0,152203	0,259375
E4VCC6	Transcriptional regulator, LacI family	0,227657	0,228473
E4V7C8	Putative peroxiredoxin bcp	0,257668	-0,138964

E4VC22	DEAD/DEAH box helicase	0,571904	-0,492183
E4V8S3	DUF58 domain-containing protein	0,477012	0,177526
E4V8S1	VWFA domain-containing protein	1,46787	-0,660386
E4V7F3	ABC transporter, ATP-binding protein	0,422309	-0,198521
E4V8M1	Large ribosomal subunit protein bL35	0,195589	2,03198
E4VBQ6	tRNA pseudouridine synthase A	1,07607	0,7541
E4V869	Thiazole biosynthesis adenylyltransferase ThiF	0,74214	-0,466006
E4V7U2	RNA methyltransferase, RsmD family	0,286967	0,208232
E4V8L6	Cys-tRNA(Pro)/Cys-tRNA(Cys) deacylase	2,34473	0,976946
E4V7U5	tRNA (guanine-N(1)-)-methyltransferase	0,0786326	0,094546
E4VCF0	Threonine/serine exporter-like N-terminal domain-containing protein	0,0286677	0,0626882
E4VBR0	Uncharacterized protein	0,84562	0,221841
E4VAM7	Bacterial SCP orthologue domain-containing protein	1,15704	0,764356
E4VCA5	Dyp-type peroxidase family protein	0,296961	-0,366057
E4VAD0	Methyltransferase domain protein	0,138116	-0,579745
E4V7W5	Ribonuclease 3	0,0507937	-0,0517483
Q1KTD9	Alpha-galactosidase	0,542601	-0,590572
E4V942	Dinuclear metal center protein, YbgI family	0,203177	-0,183069
E4VA17	DNA polymerase III, delta subunit	0,0841351	-0,196361
E4VAZ9	Transcriptional regulator, MerR family	1,02245	1,47416
E4V9Q6	Transcriptional regulator, LysR family	0,124417	0,0459199
E4VBS7	Diacylglycerol kinase catalytic domain protein	0,784327	1,3161
E4V8S0	von Willebrand factor type A domain protein	1,81622	-0,942901
E4VBX6	Glycoside/pentoside/hexuronide transporter	0	0,741367
E4VA66	ABC transporter, ATP-binding protein	0,136843	0,0651881
E4V8K4	Chromosome partition protein Smc	0,608005	-0,422603
E4VB69	Efflux ABC transporter, permease protein	0,0144794	-0,0707321
E4V8Y7	Glycosyl hydrolase family 3 N-terminal domain protein	0,36267	0,32045
E4VC58	Cys/Met metabolism PLP-dependent enzyme	0	-0,819779
E4V7Z7	Pyridoxal 5'-phosphate synthase subunit PdxT	0,479806	-0,959328
E4V989	Isochorismatase family protein	0,178511	0,189486
E4V9E9	Hydrolase, carbon-nitrogen family	0,162482	0,0951087
E4VC17	DUF2974 domain-containing protein	0,103383	0,254343
E4V7A5	Polysaccharide deacetylase	0,0996267	-0,297154
E4V7Q5	tRNA ligase class I (E and Q), catalytic domain protein	0,0937655	-0,181962
E4VCB4	Ribonuclease P protein component	0,856364	0,653328
E4VAG4	ATP-dependent Clp protease ATP-binding subunit ClpX	0,855565	-0,975717
E4VAC0	DNA-binding protein	0,317532	0,633313
E4V7B6	Ketol-acid reductoisomerase (NADP(+))	0,652394	-1,04913
E4VAN8	non-specific serine/threonine protein kinase	0,140853	0,16431

E4V7X5	Tat pathway signal sequence domain protein	0,727703	-0,282034
E4V8S7	Putative cold shock-like protein CspG	0,470167	-1,06707
E4VB77	6-phospho-beta-glucosidase	1,05656	0,60128
E4VA27	DUF3375 domain-containing protein	0,621696	-0,848896
E4VBL7	Leucine rich repeat variant	0,517413	-1,32471
E4VC75	ABC transporter, ATP-binding protein	0,0905202	-0,153669
E4VAB6	PASTA domain protein	0,121128	0,161574
E4VC54	ABC transporter, ATP-binding protein	0,0385501	-0,140637
E4VC71	Type III pantothenate kinase	0,249348	0,202363
E4V9W6	Cof-like hydrolase	0	1,75641
E4V8L0	Sigma-70 region 2	0,00704431	-0,00860612
E4V8W3	Tat pathway signal sequence domain protein	0,339597	0,296494
E4V7V0	Transcriptional regulator, GntR family	0,529313	-0,532432
E4V7V8	Class I glutamine amidotransferase	0,430928	-0,557901
E4V884	Transcriptional regulator, MarR family	1,50698	-1,4045
E4V8C5	Cell division protein FtsX	0,407787	-0,640638
E4V930	ABC transporter, ATP-binding protein	0,709298	-2,35022
E4VB81	HAD hydrolase, family IIB	0,368371	-0,960548
E4VBR9	ribonuclease H	0,164349	0,414667
E4V8N5	Prephenate dehydrogenase	0,750853	0,737651
E4V9X9	histidine kinase	0,257577	-0,166929
E4VBA7	Copper-exporting ATPase	0,744647	-0,881472
E4V921	phosphomannomutase	0,0738174	-0,152298
E4VBV8	dihydrofolate reductase	0,4463	-1,22427
E4VBI9	Phosphate transport system permease protein PstA	0,120814	0,296382
E4V9P4	Putative excinuclease ABC, A subunit	0,493271	-1,23901
E4V8K2	Hydrolase, NUDIX family	0,488493	1,83938
E4VCD6	Phosphoenolpyruvate-dependent sugar phosphotransferase system, EIIA 2	0,871384	1,52245
E4V8M9	L-aspartate oxidase	0	1,69121
E4V847	non-specific serine/threonine protein kinase	0	NaN
E4VBD8	ATP synthase subunit a	0,253174	-0,97144
E4VB96	Transcriptional regulator, TetR family	0	-3,05268
E4V7I0	Putative cystathionine beta-synthase	0	NaN
E4VAB8	Peptide deformylase	0,286626	0,921208
E4V9G4	Uncharacterized protein	NaN	0
E4V7Z1	Signal peptidase I	0,250121	0,0499115
E4VA29	Transcriptional regulator, MarR family	0,783494	1,34676
E4V9D3	Serine aminopeptidase S33 domain-containing protein	0	-0,678682
E4V8B0	TIM-barrel protein, nifR3 family	0,187769	-0,192105
E4V811	Hydrolase, alpha/beta domain protein	NaN	0

	Putative CDP-diacylglycerolglycerol-3-phosphate 3-		
E4V9S8	phosphatidyltransferase	0	NaN
E4V8S6	LytR/CpsA/Psr regulator C-terminal domain-containing protein	0,720523	-2,05176
E4VCH3	Transport permease protein	0,862835	-0,256787

Tabla S4.2. Proteinas totales identificadas para la cepa **CIDCA 5317**. Se visualizan además los valores obtenidos para -log p y el *fold change*. Las siglas NaN significan *Not a number*. Se encuentran sombreadas las proteínas sub y sobreexpresadas identificadas.

Código	Descripción	-Log valor p	Fold change
A0A087DSC5	Transaldolase	0,220464	-0,0346731
A0A087DSS3	Putative phosphoketolase	1,02524	0,202129
A0A087DQ76	NAD-dependent glyceraldehyde-3-phosphate dehydrogenase	0,00867358	0,00351588
A0A087DL56	Ketol-acid reductoisomerase (NADP(+))	0,193769	-0,277657
A0A087DMJ5	Chaperonin GroEL	0,079212	-0,0472959
A0A087DSC6	transketolase	0,345811	0,163245
A0A087DMG2	Elongation factor Tu	0,870761	0,334436
A0A087DKL5	Enolase	0,00143691	-0,000727336
A0A087DKB8	30S ribosomal protein S1	0,50421	-0,156197
A0A087DQ39	L-lactate dehydrogenase	0,147574	-0,144409
A0A087DLR4	Large ribosomal subunit protein uL10	0,282884	-0,228475
A0A087DL07	Alpha-1,4 glucan phosphorylase	0,780149	-0,438454
A0A087DSH7	Elongation factor Ts	0,701376	-0,379136
A0A087DR11	Chaperone protein DnaK	0,895644	-0,410929
A0A087DQF9	Formate acetyltransferase	0,610205	-0,191545
A0A087DLR5	Large ribosomal subunit protein bL12	0,403461	-0,264994
A0A087DSC0	Phosphoglycerate kinase	0,361294	-0,0907377
A0A087DMG0	Small ribosomal subunit protein uS7	0,460802	-0,259904
A0A087DSL6	Large ribosomal subunit protein bL25	0,502758	-0,182861
A0A087DLL1	Glucose-6-phosphate isomerase	0,0155683	0,0113627
A0A087DKB4	Pyruvate kinase	0,192546	-0,0921084
A0A087DSS1	Acetate kinase	0,428365	0,198341
A0A087DLV6	Small ribosomal subunit protein uS3	0,158016	0,0966415
A0A087DHL1	ATP synthase subunit beta	0,66809	-0,236382
A0A087DQ81	Large ribosomal subunit protein bL20	0,0865065	-0,0523135
A0A087DHK9	ATP synthase subunit alpha	1,18117	-0,384199
A0A087DLE5	Phosphoenolpyruvate-protein phosphotransferase	1,22734	-0,415951
A0A087DSH8	Small ribosomal subunit protein uS2	0,785671	-0,345501
A0A087DLW2	Large ribosomal subunit protein uL5	0,531849	-0,177026
A0A087DLV1	Large ribosomal subunit protein uL4	0,191062	-0,0604324
A0A087DLP0	Polyribonucleotide nucleotidyltransferase	0,113189	0,0765635
A0A087DMG1	Elongation factor G	0,125939	0,0663211
A0A087DHH0	Large ribosomal subunit protein bL9	0,277666	-0,119415
A0A087DQD1	Ribosome hibernation promoting factor	1,05969	-0,267967
A0A087DSR3	Small ribosomal subunit protein uS4	0,0646544	-0,0342954
A0A087DLZ3	Phosphoglucomutase	0,72526	0,109809
A0A087DMI3	DNA-binding protein HB1	0,120355	-0,0892995
A0A087DLW7	Small ribosomal subunit protein uS5	0,35116	0,085715
A0A087DLL2	Large ribosomal subunit protein bL19	0,30605	-0,14675
A0A087DLU1	Large ribosomal subunit protein uL13	0,130348	-0,0628268

A0A087DLW5	Large ribosomal subunit protein uL6	0,0230827	-0,0297025
A0A087DLV3	Large ribosomal subunit protein uL2	0,490178	0,27366
A0A087DHG3	Putative nucleoside hydrolase protein	0,241592	-0,093132
A0A087DM14	Universal stress family protein	0,069795	0,036588
A0A087DLI8	Small ribosomal subunit protein bS16	0,139645	0,05616
A0A087DLM0	Large ribosomal subunit protein bL21	0,799517	-0,281629
A0A087DLM7	Large ribosomal subunit protein uL11	0,616493	-0,182996
A0A087DMK3	ATP-dependent Clp protease ATP-binding subunit	0,229789	0,156539
A0A087DLM8	Large ribosomal subunit protein uL1	0,967892	0,148734
A0A087DS98	Choloylglycine hydrolase	0,334783	0,542966
A0A087DKZ6	Glutamate dehydrogenase	1,18958	0,456717
A0A087DQ94	ABC-type transporter	0,0817902	0,0449117
A0A087DLV5	Large ribosomal subunit protein uL22	0,160294	-0,104421
A0A087DLX6	DNA-directed RNA polymerase subunit alpha	0,4022	0,125746
A0A087DLU2	Small ribosomal subunit protein uS9	0,073853	0,0274785
A0A087DNK1	DNA-directed RNA polymerase subunit beta'	0,640214	0,319127
A0A087DM06	2,3-bisphosphoglycerate-dependent phosphoglycerate mutase	1,01108	0,376048
A0A087DRI5	Polyphosphate glucokinase	0,105598	-0,0467504
A0A087DLQ2	Aminopeptidase	0,0240074	0,00790024
A0A087DQ14	Cell wall synthesis protein Wag31	0,393638	-0,221395
A0A087DSL5	branched-chain-amino-acid transaminase	0,125838	-0,0612322
A0A087DLN6	Type I multifunctional fatty acid synthase	0,0615509	0,0496152
A0A087DNK2	DNA-directed RNA polymerase subunit beta	0,720977	0,263456
A0A087DLX4	Small ribosomal subunit protein uS13	0,164344	-0,0577316
A0A087DLW6	Large ribosomal subunit protein uL18	0,0356345	0,00913366
A0A087DSQ0	CTP synthase	1,21388	0,27702
A0A087DMK4	DNA repair ATPase	0,47045	0,338257
A0A087DT22	ABC transporter substrate-binding protein	1,01362	-0,303876
A0A087DLX7	Large ribosomal subunit protein bL17	0,279152	0,319879
A0A087DQG3	Trigger factor	0,132559	-0,0605011
A0A087DMN3	ABC transporter ATP-binding protein	0,859627	-0,608531
A0A087DM19	UDP-glucose 4-epimerase	0,0419992	0,0272814
A0A087DKN3	6-phosphogluconate dehydrogenase, decarboxylating	0,518974	0,116103
A0A087DLY9	Ribose-5-phosphate isomerase A	0,0888275	-0,0284475
A0A087DLW4	Small ribosomal subunit protein uS8	0,212617	-0,134443
A0A087DQ58	Pyridoxamine 5'-phosphate oxidase	0,607102	0,591413
A0A087DMK6	AspartatetRNA(Asp/Asn) ligase	0,0178673	0,0107816
A0A087DL28	Heat shock protein Hsp20	0,519518	-1,53401
A0A087DM79	Inosine-5'-monophosphate dehydrogenase	0,653825	0,377844
A0A087DLE0	Pre-pilin peptidase	0,0304806	0,0220909
A0A087DHI1	Chaperone protein ClpB	0,0471331	-0,0270526

A0A087DHG7	Small ribosomal subunit protein bS6	0,0950189	-0,0667178
A0A087DQ97	Dipeptide transport ATP-binding protein	0,0828401	0,0340309
A0A087DLW0	Large ribosomal subunit protein uL14	0,689902	-1,17696
A0A087DSN4	NAD(P) transhydrogenase subunit alpha part 1	0,0944576	0,0326309
A0A087DLW9	Large ribosomal subunit protein uL15	0,888075	-0,365407
A0A087DLS4	Co-chaperonin GroES	0,878257	0,209531
A0A087DSJ9	Aspartate carbamoyltransferase	1,34605	0,331076
A0A087DHJ1	Flavin containing amine oxidoreductase	0,365361	-0,133427
A0A087DLU9	Small ribosomal subunit protein uS10	0,246595	-0,37542
A0A087DLE8	formatetetrahydrofolate ligase	2,41628	0,456801
A0A087DL31	DO serine protease	0,0678903	0,0590553
A0A087DNH9	Aminopeptidase N	0,228758	-0,0973473
A0A087DLV2	Large ribosomal subunit protein uL23	0,0442378	0,0224737
A0A087DLE7	Dipeptidase	0,208289	0,206649
A0A087DNM4	3-isopropylmalate dehydrogenase	0,396539	0,200378
A0A087DL01	Phosphoenolpyruvate carboxylase	0,0860472	-0,0621847
A0A087DQ11	Cell division protein FtsZ	0,0452315	0,0123151
A0A087DLY2	Transcription termination/antitermination protein NusA	0,952031	0,196654
A0A087DLF5	GlutamatetRNA ligase	0,0592938	0,0268796
A0A087DRL2	PhenylalaninetRNA ligase beta subunit	0,415241	0,0622978
A0A087DQ09	GlycinetRNA ligase	0,309637	0,161383
A0A087DM00	PspC domain protein	0,491055	-0,214132
A0A087DMF4	Phosphoribosylaminoimidazole-succinocarboxamide synthase	1,94399	0,460411
A0A087DLZ7	SerinetRNA ligase	0,151883	0,0333214
A0A087DNN2	Thioredoxin	0,4573	0,481523
A0A087DSF9	ThreoninetRNA ligase	0,358635	0,0924416
A0A087DHK2	Inorganic pyrophosphatase	0,317838	-0,205722
A0A087DKC5	1,4-alpha-glucan branching enzyme GlgB	0,0281729	-0,0160739
A0A087DMK5	HistidinetRNA ligase	1,66314	0,338043
A0A087DLC8	2-isopropylmalate synthase	0,527395	-0,237619
A0A087DLV8	Large ribosomal subunit protein uL29	0,148281	0,067468
A0A087DRK0	Glutamine synthetase	0,505692	-0,275499
A0A087DSJ3	Orotate phosphoribosyltransferase	0,586223	0,159433
A0A087DHG9	Small ribosomal subunit protein bS18	0,159997	0,0421092
A0A087DHK7	ATP synthase subunit b	0,427888	-0,27695
A0A087DML8	ATP-dependent Clp protease proteolytic subunit	0,206084	0,215846
A0A087DLV9	Small ribosomal subunit protein uS17	0,499484	-0,302202
A0A087DL41	Adenylosuccinate synthetase	0,525948	0,138051
A0A087DT92	Sugars ABC transporter ATP-binding protein	0,733323	-0,357044
A0A087DM86	ProlinetRNA ligase	0,181127	-0,0557353
A0A087DMG3	Elongation factor P	0,0836178	-0,0438309

A0A087DHL0	ATP synthase gamma chain	0,693468	-0,346803
A0A087DMJ2	Magnesium chelatase family protein	0,391569	-0,220188
A0A087DLX5	Small ribosomal subunit protein uS11	0,00620663	0,0177237
A0A087DHI8	Aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B	0,0313884	0,014623
A0A087DHM2	Homoserine dehydrogenase	1,67379	0,11482
A0A087DLV7	Large ribosomal subunit protein uL16	0,985518	0,108505
A0A087DLV4	Small ribosomal subunit protein uS19	0,168514	0,153253
A0A087DSQ9	AlaninetRNA ligase	0,359694	0,0778033
A0A087DMD0	Glutamate/aspartate ABC transporter substrate-binding protein	0,0216576	-0,0213165
A0A087DQD2	Protein translocase subunit SecA	0,857044	0,474336
A0A087DS90	LeucinetRNA ligase	0,114857	-0,036658
A0A087DSI2	Inosine 5-monophosphate dehydrogenase	0,461072	0,103439
A0A087DLA7	Uracil phosphoribosyltransferase	0,750665	0,38169
A0A087DNH4	Glutamate decarboxylase	0,144088	0,682213
A0A087DLN9	Small ribosomal subunit protein uS15	0,517414	-0,790762
A0A087DM72	Branched-chain amino acid ABC transporter, solute-binding protein	0,0030761	-0,0033315
A0A087DQ86	50S ribosomal subunit assembly factor BipA	0,267228	0,180169
A0A087DSE8	Bifunctional purine biosynthesis protein PurH	0,434025	0,279549
A0A087DLA6	Phosphodiesterase	0,0970781	0,172309
A0A087DLX1	Adenylate kinase	0,810647	0,318213
A0A087DMG6	Carbamoyl-phosphate synthase large chain	1,47387	0,669923
A0A087DSP7	ABC transporter ATP-binding protein	0,170991	0,131894
A0A087DL34	Ferredoxin/ferredoxin-NADP reductase	0,636407	0,169034
A0A087DSP3	Glucose-1-phosphate adenylyltransferase	1,4233	-0,280632
A0A087DHJ6	ValinetRNA ligase	0,0145137	0,00560125
A0A087DLB0	Polyphosphate kinase	0,153822	-0,0679207
A0A087DRM1	Argininosuccinate lyase	0,186907	0,0588748
A0A087DLC4	Aspartate-semialdehyde dehydrogenase	0,659003	0,155505
A0A087DLG2	UDP-N-acetylglucosamine 1-carboxyvinyltransferase	0,00916752	0,00523885
A0A087DNM9	NAD(+) diphosphatase	0,294487	0,373798
A0A087DQA3	Cation-transporting ATPase	0,547535	-0,0995712
A0A087DNH8	Phosphoglucosamine mutase	0,80971	0,434411
A0A087DKE0	Transcription elongation factor GreA	0,0789241	-0,0801118
A0A087DLJ9	Acetolactate synthase small subunit	1,20859	0,302104
A0A087DNI1	4-hydroxy-tetrahydrodipicolinate synthase	0,070737	-0,0192877
A0A087DLD8	Myo-inositol-1-phosphate synthase	0,367384	0,106921
A0A087DLU8	Aldehyde-alcohol dehydrogenase	0,854614	-0,560848
A0A087DHI7	Glutamyl-tRNA(Gln) amidotransferase subunit A	0,338846	0,132445
A0A087DRJ6	M20/M25/M40 family peptidase	1,08786	0,26918
A0A087DSN5	Long-chain-fatty-acid-CoA ligase	0,666354	0,228057
A0A087DLQ1	Cell division protein	0,332079	0,17743

A0A087DSH6	Uridylate kinase	0,554908	0,15339
A0A087DLM1	Large ribosomal subunit protein bL27	0,432787	-1,39248
A0A087DQ56	UDP-N-acetylmuramateL-alanine ligase	0,512615	0,157977
A0A087DM36	ATP-dependent zinc metalloprotease FtsH	0,0220761	0,0135295
A0A087DT91	DUF4032 domain-containing protein	0,0163519	0,0131175
A0A087DLM4	Aminotransferase	0,526961	0,398999
A0A087DRJ8	Dihydrolipoamide dehydrogenase	0,188912	0,100188
A0A087DMF9	Small ribosomal subunit protein uS12	1,29816	0,641936
A0A087DNY6	IsoleucinetRNA ligase	0,431512	0,221016
A0A087DKZ4	DNA gyrase subunit A	0,567894	0,283801
A0A087DQ73	Aldose 1-epimerase	0,156058	-0,110657
A0A087DSH5	Ribosome-recycling factor	1,06809	0,223543
A0A087DLI2	Large ribosomal subunit protein bL28	0,00506683	0,00617472
A0A087DSS4	GMP synthase [glutamine-hydrolyzing]	0,409324	-0,134705
A0A087DM91	2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase	0,299634	0,121217
A0A087DL21	Putative FHA domain protein	0,638573	-0,287486
A0A087DLY3	Translation initiation factor IF-2	0,221645	-0,103135
A0A087DM04	LysinetRNA ligase	0,451386	-0,111023
A0A087DHK8	ATP synthase subunit delta	0,583282	-0,208138
A0A087DKB3	Two-component system response regulator	0,349791	-0,0828381
A0A087DSG6	Ribulose-phosphate 3-epimerase	0,0326481	0,0288963
A0A087DQ66	Xaa-Pro aminopeptidase	0,72975	0,233729
A0A087DMG9	Dihydroxy-acid dehydratase	1,39754	0,579906
A0A087DMF3	Phosphoribosylformylglycinamidine synthase	1,38256	1,01098
A0A087DLV0	Large ribosomal subunit protein uL3	0,696726	0,52039
A0A087DNI0	Ribonuclease J	0,133915	-0,0695864
A0A087DRM0	Argininosuccinate synthase	0,455272	0,193686
A0A087DSF7	Probable transcriptional regulatory protein BSTER_1044	0,0871469	-0,0222028
A0A087DLF9	3-isopropylmalate dehydratase small subunit	0,494633	0,34702
A0A087DT78	alpha-galactosidase	0,109758	0,0299276
	SalY-type ABC antimicrobial peptide transport system permease	4.60000	0.455400
A0A087DMN4	component	1,68023	-0,466109
A0A087DLF3	Uncharacterized protein	0,368919	-0,289442
A0A087DMA3	Glutaminefructose-6-phosphate aminotransferase [isomerizing]	0,274533	0,149254
A0A087DKE1	Peptidyl-prolyl cis-trans isomerase	0,020274	0,0101643
A0A087DRJ9	Integral membrane protein	0,0543085	0,0126762
A0A087DLG5	D-alanineD-alanine ligase	0,84695	-0,320155
A0A087DQ99	DUF3710 domain-containing protein	0,926648	0,325317
A0A087DKZ0	Beta sliding clamp	0,142822	0,0581697
A0A087DLK7	Nicotinate phosphoribosyltransferase	0,714967	-0,138234
A0A087DLP1	LemA-like protein	1,6232	0,47504
A0A087DHK3	Alpha-1,4-glucan:maltose-1-phosphate maltosyltransferase	0,586657	0,876434

A0A087DHL7	Thioredoxin domain-containing protein	0,181676	-0,192893
A0A087DLM6	Transcription termination/antitermination protein NusG	0,172584	-0,112418
A0A087DMM8	O-acetylhomoserine (Thiol)-lyase	0,172391	-0,172181
A0A087DRV0	Ribose-phosphate pyrophosphokinase	0,583525	0,289787
A0A087DM42	Energy-dependent translational throttle protein EttA	0,136981	0,0630391
A0A087DSP9	ABC transporter	0,505523	0,431333
A0A087DMI5	Adenylosuccinate lyase	0,524685	0,262763
A0A087DSD4	Signal transduction protein	0,244159	0,0905418
A0A087DR01	MethioninetRNA ligase	0,369284	-0,0884819
A0A087DR09	Chaperone protein DnaJ	0,365014	-0,512421
A0A087DM82	Oligoribonuclease	0,741446	0,279882
A0A087DQ44	D-3-phosphoglycerate dehydrogenase	0,0739806	-0,028361
A0A087DLJ0	Signal recognition particle protein	1,08287	-0,335085
A0A087DKL9	UPF0182 protein BSTER_1781	0,319181	-0,133289
A0A087DM07	Myosin-cross-reactive antigen	0,0884473	-0,17328
A0A087DM30	L-1,2-propanediol oxidoreductase	0,482761	-0,630621
A0A087DHK4	Homoserine	0,489987	-0,282525
A0A087DM35	Hypoxanthine phosphoribosyltransferase	0,00893676	0,00674311
A0A087DSP6	Cysteine desulfurase	1,24513	0,556538
A0A087DLW8	Large ribosomal subunit protein uL30	0,252635	-0,588855
A0A087DS80	Aminopyrimidine aminohydrolase	0,850979	0,362296
A0A087DLM2	GTPase	0,808303	-0,218022
A0A087DLU0	4-alpha-glucanotransferase	0,386032	-0,241801
A0A087DQ18	Histidinol dehydrogenase	0,208891	0,100018
A0A087DS83	Bifunctional protein GlmU	0,425407	-0,108652
A0A087DLN4	biotin carboxylase	0,270681	0,141675
A0A087DSA1	Methionine synthase vitamin-B12 independent protein	0,0412198	0,0183595
A0A087DM08	Phosphate-specific transport system accessory protein PhoU	0,245868	-0,22533
A0A087DNK6	UPF0210 protein BSTER_1326	0,0020609	-0,000944773
A0A087DSF1	SuccinateCoA ligase [ADP-forming] subunit beta	0,745412	0,316714
A0A087DSE4	Multifunctional fusion protein	0,305838	0,111849
A0A087DQ61	Peptides ABC transporter substrate-binding protein	0,497473	-0,138739
A0A087DML7	ATP-dependent Clp protease proteolytic subunit	0,330911	0,405345
A0A087DR14	DUF2961 domain-containing protein	1,00337	-0,633488
A0A087DSB8	ATP-binding protein	0,690101	-1,19606
A0A087DMK2	UspA domain protein	0,39925	0,553642
A0A087DQ80	Large ribosomal subunit protein bL35	0,000273382	0,000409444
A0A087DSG4	ATP phosphoribosyltransferase	0,0962149	-0,0254364
A0A087DSF3	Protein translocase subunit YajC	0,0987198	-0,152416
A0A087DKZ3	DNA gyrase subunit B	0,650206	0,306145
A0A087DRL1	PhenylalaninetRNA ligase alpha subunit	0,319075	0,110009

A0A087DLZ4	Glucose-specific II BC component	0,558168	-0,271981
A0A087DHM9	Long-chain-fatty acid CoA ligase	0,29123	-0,145549
A0A087DLD9	UDP-galactopyranose mutase	0,287685	0,206882
A0A087DQ79	Translation initiation factor IF-3	0,657314	0,199842
A0A087DHN7	Dehydrogenase or reductase protein	0,304271	0,310481
A0A087DM01	Uncharacterized protein	0,813966	0,835064
A0A087DMC0	Alanine racemase	0,0110711	0,01393
A0A087DSF0	SuccinateCoA ligase [ADP-forming] subunit alpha	0,74997	0,256052
A0A087DQA4	Aconitate hydratase	1,41786	0,723675
A0A087DME8	Phosphoribosylamineglycine ligase	0,642557	0,568176
A0A087DHG6	Ribose-phosphate pyrophosphokinase	0,0193154	0,0115395
A0A087DSB9	Probable cell division protein WhiA	0,184194	0,0787093
A0A087DQE8	Deoxyuridine 5'-triphosphate nucleotidohydrolase	0,175847	-0,155996
A0A087DMC7	ABC transporter permease	0,594755	-0,704478
A0A087DSK7	Glycosyltransferase	0,598397	0,224848
A0A087DNL5	Galactokinase	0,133741	0,0538947
A0A087DKC6	Response regulator of two-component system	0,448307	0,35069
A0A087DT08	Lacl-type transcriptional regulator	0,178419	-0,272124
A0A087DHM8	L-arabinose isomerase	0,339806	-0,182798
A0A087DSP0	Histidine triad (HIT) protein	2,38797	0,392431
A0A087DHL8	Putative translational inhibitor protein	1,43484	0,584049
A0A087DMI1	2-keto-3-deoxy-6-phosphogluconate aldolase	0,420782	-0,249524
A0A087DLK0	Acetolactate synthase	0,0536343	-0,0223732
A0A087DKP1	phosphoglycerate mutase (2,3-diphosphoglycerate-dependent)	0,145955	0,225428
A0A087DSE6	Membrane channel protein	0,0428681	0,0280774
A0A087DLF6	Putative phosphohydrolase	0,243201	0,171123
A0A087DLN5	Propionyl-CoA carboxylase subunit beta	0,152524	-0,0854778
A0A087DSP8	ABC transporter	1,06526	0,456183
A0A087DMD7	Band 7 protein	0,4573	-0,572382
A0A087DRI4	Glycosyltransferase	0,480044	-0,305499
A0A087DHJ2	Transcription termination factor Rho	0,224046	0,08498
A0A087DNL6	UDP-glucosehexose-1-phosphate uridylyltransferase	0,491606	0,400796
A0A087DRT4	TyrosinetRNA ligase	0,290889	-0,361589
A0A087DQ78	Asparagine synthetase	0,781544	0,613116
A0A087DMJ8	Response regulator of two-component system	0,462813	0,257703
A0A087DQ69	ATP-grasp superfamily protein	0,146148	-0,0867589
A0A087DME9	Phosphoribosylformylglycinamidine cyclo-ligase	0,623759	0,167624
A0A087DSL3	Small ribosomal subunit protein bS20	0,359394	0,606362
A0A087DM41	Acyl-CoA thioesterase II	0,100473	0,0859222
A0A087DM47	O-acetylhomoserine (Thiol)-lyase	0,146555	0,0928148
A0A087DT14	Maltose/maltodextrin-binding protein	0,266529	1,00736

A0A087DRU7	Gamma-glutamyl phosphate reductase	0,055882	0,0266889
A0A087DSI0	Long-chain-fatty acid CoA ligase	0,710071	0,19569
A0A087DQ53	UDP-N-acetylmuramoylalanineD-glutamate ligase	0,198884	0,178435
A0A087DQY5	ABC transporter ATP-binding protein	0,013428	0,0101376
A0A087DLR7	DNA and RNA helicase related protein	0,28963	0,341508
A0A087DQD7	S1-acyl-sn-glycerol-3-phosphate acyltransferase	0,499918	0,538125
A0A087DSN2	NAD(P) transhydrogenase subunit beta	0,546032	0,307779
A0A087DKN4	LysinetRNA ligase	0,359194	0,417414
A0A087DHI9	Acetyltransferase	0,0702267	0,0757249
A0A087DKL2	Exopolyphosphatase-like protein	0,139283	0,092912
A0A087DLG4	Glycerol-3-phosphate dehydrogenase [NAD(P)+]	0,537365	0,165176
A0A087DMG5	Carbamoyl-phosphate synthase small chain	1,18094	0,671319
A0A087DMK7	Glutamine ABC transporter	2,0908	-0,139755
A0A087DNW6	ATP-binding protein	0,313591	0,281395
A0A087DNV3	ABC transporter substrate-binding protein	1,08021	0,49014
A0A087DSF2	Adenine phosphoribosyltransferase	0,917365	-0,138966
A0A087DSL0	Glutamate synthase	1,17377	0,952075
A0A087DQF7	Glutamine-dependent NAD(+) synthetase	0,608823	0,409466
A0A087DLW1	Large ribosomal subunit protein uL24	0,14859	0,390745
A0A087DM93	Peptide chain release factor 2	0,468362	0,252669
A0A087DQ95	Peptide ABC transporter permease	0,711666	-0,359107
A0A087DNZ8	Beta-D-glucosideglucohydrolase	0,914378	1,6279
A0A087DHM0	ArgininetRNA ligase	0,778809	0,281543
A0A087DSJ4	Dihydroorotate dehydrogenase	0,429522	0,201015
A0A087DSJ5	Dihydroorotate dehydrogenase electron transfer subunit	1,90833	0,672712
A0A087DLK4	Cell division initiation protein	0,31753	-0,204653
A0A087DLF8	3-isopropylmalate dehydratase large subunit	0,647857	0,503246
A0A087DMA0	ABC transporter substrate-binding protein	0,162698	-0,0734138
A0A087DLJ1	CysteinetRNA ligase	0,529535	0,126953
A0A087DRL7	Acetylornithine aminotransferase	0,715272	0,222212
A0A087DP11	Anaerobic ribonucleoside triphosphate reductase	1,11933	1,15701
A0A087DM89	Methionine aminopeptidase	0,897073	0,431511
A0A087DLE1	DNA topoisomerase 1	1,78669	0,278865
A0A087DLX0	Protein translocase subunit SecY	0,535767	-0,263156
A0A087DMN9	Ribosome-binding ATPase YchF	0,79875	0,47311
A0A087DKA9	Glycogen operon protein GlgX	0,710411	0,573498
A0A087DM98	ABC transporter substrate-binding protein	0,00547581	-0,0112356
A0A087DMH8	Inositol monophosphatase	0,401351	-0,123994
A0A087DR07	Transposase	0,975978	0,606705
A0A087DMN5	Response regulator of two-component system	0,809256	0,374983
A0A087DKY5	Jag protein	1,94145	0,471626

AQA087DNXA ABC-type tronsporter 0,185911 0,106077 AQA087DNIOT 4-hydroxy-tetrahydrodipicolinate reductase 0,646133 -0,331576 AQA087DNXD Glicuses-E-phosphate 1-dehydrogenase 0,126188 -0,122268 AQA087DNSD UDP-N ocetylglucosamine-N-ocetylmuramyl-pyrophospharyl-undecaprenol N-acetylglucosamine transferase 0,968637 0,95788 AQA087DNSD Glutamate synthase subunit beta 1,4249 0,812446 AQA087DISTB Phospholipase/carboxylesterase 0,41956 0,506655 AQA087DISTB Phospholipase/carboxylesterase 0,41956 0,506655 AQA087DHS N5-carboxyaminoimidazole ribanucleotide synthase 0,75357 0,152368 AQA087DHS N5-carboxyaminoimidazole ribanucleotide synthase 0,615909 0,558893 AQA087DHS Aminopyrimidine aminohydrolase 0,152906 0,0543722 AQA087DHS Aminopyrimidine aminohydrolase 0,162906 0,0543722 AQA087DHS Aminopyrimidine aminohydrolase 0,0830195 0,103019 AQA087DHS Aminopyrimidine aminohydrolase 0,0830195 0,103019 A	A0A087DQY4	ABC transporter permease	0,258328	-0,102079
ADAO87DKNO Glucose-6-phosphate 1-dehydrogenase 0,126186 -0,122269 UDP-N-acetylglucosamine-N-acetylmuramyl- pyrophosphoryl-undecapreno Nacetylglucosamine transferase 0,968637 0,495789 ADAO87DKS Glutamate synthase subunit beta 1,4249 0,812446 ADAO87DKS Glutamate synthase subunit beta 1,4249 0,812446 ADAO87DKS Glutamate synthase subunit beta 1,4249 0,812446 ADAO87DKS Glutamate synthase subunit beta 1,4249 0,41956 0,506655 ADAO87DKS 0,506655 ADAO87DKS 0,506655 ADAO87DKS 0,527537 0,152368 ADAO87DKS 0,527537 0,152368 ADAO87DKS 0,527537 0,152368 ADAO87DKS 0,527537 0,152368 ADAO87DKS 0,615909 0,558893 ADAO87DKS 0,615909 0,558893 ADAO87DKS 0,615909 0,558893 ADAO87DKS Aminotronsferase 0,6830195 0,025482 ADAO87DKS Aminotronsferase 0,6830195 0,103019 ADAO87DKS Aminotronsferase 0,6830195 0,103019 ADAO87DKS Aminotronsferase 0,830195 0,103019 ADAO87DKS Agricultural subunit protein b133 0,940223 0,578112 ADAO87DKS Large ribosomal subunit protein b133 0,940223 0,578112 ADAO87DKS Aminotronsferase 0,922586 0,285632 ADAO87DKS Aminotronsferase 0,0270529 ADAO87DKS ADAO87DKS Theonine synthase 0,18256 0,0073878 ADAO87DKS Theonine synthase 0,18256 0,0073878 ADAO87DKS Theonine synthase 0,184256 0,0073878 ADAO87DKS Theonine synthase 0,18456 0,487389 0,422666 ADAO87DKS Apartokinase 0,531539 0,43341 ADAO87DKS Apartokinase 0,531539 0,43341 ADAO87DKS Apartokinase 0,531539 0,43341 ADAO87DKS Apartokinase 0,51652 0,422666 ADAO87DKS Apartokinase 0,14367 0,140616 ADAO87DKS Apartokinase synthase 0,167317 0,10666 ADAO87DKS Apartokinase synthase 0,167317 0,10666 ADAO87DKS Apartokinas	A0A087DNX4	ABC-type transporter	0,185911	0,106077
ADAO87DKNO Glucose-6-phosphate 1-dehydrogenase 0,126186 -0,122269 UDP-N-acetylglucosamine-N-acetylmuramyl- pyrophosphoryl-undecapreno Nacetylglucosamine transferase 0,968637 0,495789 ADAO87DKS Glutamate synthase subunit beta 1,4249 0,812446 ADAO87DKS Glutamate synthase subunit beta 1,4249 0,812446 ADAO87DKS Glutamate synthase subunit beta 1,4249 0,812446 ADAO87DKS Glutamate synthase subunit beta 1,4249 0,41956 0,506655 ADAO87DKS 0,506655 ADAO87DKS 0,506655 ADAO87DKS 0,527537 0,152368 ADAO87DKS 0,527537 0,152368 ADAO87DKS 0,527537 0,152368 ADAO87DKS 0,527537 0,152368 ADAO87DKS 0,615909 0,558893 ADAO87DKS 0,615909 0,558893 ADAO87DKS 0,615909 0,558893 ADAO87DKS Aminotronsferase 0,6830195 0,025482 ADAO87DKS Aminotronsferase 0,6830195 0,103019 ADAO87DKS Aminotronsferase 0,6830195 0,103019 ADAO87DKS Aminotronsferase 0,830195 0,103019 ADAO87DKS Agricultural subunit protein b133 0,940223 0,578112 ADAO87DKS Large ribosomal subunit protein b133 0,940223 0,578112 ADAO87DKS Aminotronsferase 0,922586 0,285632 ADAO87DKS Aminotronsferase 0,0270529 ADAO87DKS ADAO87DKS Theonine synthase 0,18256 0,0073878 ADAO87DKS Theonine synthase 0,18256 0,0073878 ADAO87DKS Theonine synthase 0,184256 0,0073878 ADAO87DKS Theonine synthase 0,18456 0,487389 0,422666 ADAO87DKS Apartokinase 0,531539 0,43341 ADAO87DKS Apartokinase 0,531539 0,43341 ADAO87DKS Apartokinase 0,531539 0,43341 ADAO87DKS Apartokinase 0,51652 0,422666 ADAO87DKS Apartokinase 0,14367 0,140616 ADAO87DKS Apartokinase synthase 0,167317 0,10666 ADAO87DKS Apartokinase synthase 0,167317 0,10666 ADAO87DKS Apartokinas	A0A087DNI7	4-hydroxy-tetrahydrodipicolinate reductase	0,646133	-0,331576
UDP-N-acetylglucosamine-N-acetylmuramyl- pyrophosphoryl- undecaprenol N-acetylglucosamine transferase	A0A087DKN0			·
ADA087DSK9 Glutamate synthase subunit beta 1,4249 0,812446 ADA087DTB1 Phospholipose/carboxylesterase 0,41956 0,506655 ADA087DME5 N5-carboxyaminoimidazole ribonucleotide synthase 0,275357 0,152368 ADA087DR3 Aminopyrimidine aminohydrolase 0,615909 0,558893 ADA087DH16 Pyridoxal phosphate homeostasis protein 0,0374079 -0,0254822 ADA087DH15 Aminotransferase 0,0330195 -0,130019 ADA087DH15 Aminotransferase 0,0330195 -0,130019 ADA087DH15 Aphonaty-ajucosidase 0,134016 0,0995344 ADA087DH15 Large ribosomal subunit protein b133 0,940223 0,578112 ADA087DL55 Large ribosomal subunit protein b133 0,940223 0,578112 ADA087DL50 Jerie ribosomal subunit protein b133 0,940223 0,578112 ADA087DL50 Jerie ribosomal subunit protein b133 0,940223 0,578112 ADA087DL50 Jerie ribosomal subunit protein b133 0,940223 0,578112 ADA087DL61 RNA methyltransferase 0,0225566			,	,
AOA087D181 Phospholipose/carboxylesterase 0,41956 0,506655 AOA087DME5 NS-carboxyaminolinidazole ribonucleotide synthase 0,275357 0,152368 AOA087DN192 Dipeptidase 0,615909 0,558893 AOA087DN183 Aminopyrimidine aminohydrolase 0,162906 -0,0543722 AOA087DN16 Pyridoxal phosphate homeostasis protein 0,0374079 -0,0259482 AOA087DN165 Aminotronsferase 0,0830195 -0,103019 AOA087DN16 Serine hydroxymethyltransferase 1,77119 0,412774 AOA087DN15 Large ribosomal subunit protein bl.33 0,940223 0,578112 AOA087DN20 Aminotransferase 0,922586 0,285632 AOA087DN21 Aminotransferase 0,320205 -0,270529 AOA087DN21 RNA methyltronsferase 0,0184256 0,0073878 AOA087DN36 Threonine synthase 2,1866 0,487389 AOA087DN36 Threonine synthase 0,0086958 0,00466474 AOA087DN36 Long-chain-fotty-acid-Coal ligase 0,531539 0,433341 AOA087DN	A0A087DQ55	undecaprenol N-acetylglucosamine transferase	0,968637	0,495789
AOA087DME5 N5-carboxyaminoimidazole ribonucleotide synthase 0,275357 0,152368 AOA087D192 Dipeptidase 0,615909 0,558893 AOA087DRIS Aminopyrimidine aminohydrolase 0,162906 -0,0543722 AOA087DHH6 Pyridoxal phosphate homeostasis protein 0,0374079 -0,0259482 AOA087DH5 Aminotransferase 0,0830195 -0,103019 AOA087DH5 Alpha-1,4-glucosidase 0,144016 0,0995344 AOA087DH0 Serine hydroxymethyltransferase 1,77119 0,412774 AOA087DH05 Serine hydroxymethyltransferase 1,77119 0,412774 AOA087DH06 Aminotransferase 0,90223 0,578112 AOA087DH07 Aminotransferase 0,922586 0,285632 AOA087DH08 I-devxy-D-xyllose 5-phosphate reductoisomerase 0,320205 -0,270529 AOA087DH05 I-devxy-D-xyllose 5-phosphate reductoisomerase 0,320205 -0,270529 AOA087DH05 Trecanine synthase 2,1866 0,487389 AOA087DH05 Great Era 0,00808958 0,00466474 A	A0A087DSK9	Glutamate synthase subunit beta	1,4249	0,812446
AQA087DL92 Dipeptidose 0,615909 0,558893 AQA087DRIS Aminopyrimidine aminohydrolase 0,162906 -0,0543722 AQA087DHH6 Pyridxxal phosphate homeostasis protein 0,0374079 -0,0259482 AQA087DH5 Aminotransferase 0,0830195 -0,103019 AQA087DH7 Alpha-1,4-glucosidase 0,134016 0,0995344 AQA087DNU5 Serine hydroxymethyltransferase 1,77119 0,412774 AQA087DUS Large ribosomal subunit protein bL33 0,940223 0,578112 AQA087DUSD Jerin hydroxymethyltransferase 0,922586 0,285632 AQA087DV9 J-deoxy-D-xylulose 5-phosphate reductoisomerase 0,320205 -0,270529 AQA087DRU5 Threonine synthase 2,1866 0,487389 AQA087DRU5 Threonine synthase 2,1866 0,487389 AQA087DL7 Aspartokinase 0,531539 0,433341 AQA087DL5 Long-chain-fatty-acidCoA ligase 0,531539 0,433341 AQA087DL6 Aspartokinase 0,571652 0,422866 AQA087DL7 Alcio	A0A087DT81	Phospholipase/carboxylesterase	0,41956	0,506655
ADA087DRI3 Aminopyrimidine aminohydrolase 0,162906 -0,0543722 ADA087DHH6 Pyridoxal phosphate homeostasis protein 0,0374079 -0,0259482 ADA087DHH5 Aminotransferase 0,0830195 -0,103019 ADA087DT17 Alpha-1,4-glucosidase 0,134016 0,0995344 ADA087DRU6 Serine hydroxymethyltransferase 1,77119 0,412774 ADA087DLS5 Large ribosomal subunit protein bL33 0,940223 0,578112 ADA087DP20 Aminotransferase 0,922586 0,285632 ADA087DNV9 1-deoxy-D-xylulose 5-phosphate reductoisomerase 0,320205 -0,270529 ADA087DNV9 1-deoxy-D-xylulose 5-phosphate reductoisomerase 0,0184256 0,0073878 ADA087DNS0 GTPase Era 0,0088058 0,00466474 ADA087DNS0 GTPase Era	A0A087DME5	N5-carboxyaminoimidazole ribonucleotide synthase	0,275357	0,152368
A0A087DHH6 Pyridoxal phosphate homeostosis protein 0,0374079 -0,0259482 A0A087DLH5 Aminotransferase 0,0830195 -0,103019 A0A087DLT7 Alpha-1,4-glucosidose 0,134016 0,0995344 A0A087DLS Serine hydroxymethyltransferase 1,77119 0,412774 A0A087DLS5 Large ribosomal subunit protein bL33 0,940223 0,578112 A0A087DNP20 Aminotransferase 0,922586 0,285632 A0A087DND9 1-deoxy-D-xylulose 5-phosphate reductoisomerase 0,320205 -0,270529 A0A087DND1 1-deoxy-D-xylulose 5-phosphate reductoisomerase 0,0184256 0,0073878 A0A087DND5 1-freenin-synthose 2,1866 0,487389 A0A087DND5 Threonine synthose 2,1866 0,487389 A0A087DND6 GFPase Era 0,00880958 0,00466474 A0A087DND6 Aspartokinase 0,531539 0,433341 A0A087DND6 Aspartokinase 0,571652 0,422866 A0A087DND6 Aspartokinase 0,571652 0,422866 A0A087DNBA Dihydropter	A0A087DL92	Dipeptidase	0,615909	0,558893
ADA087DLH5 Aminotransferase 0,0830195 -0,103019 ADA087DT17 Alpha-1,4-glucosidase 0,134016 0,0995344 ADA087DRU6 Serine hydroxymethyltransferase 1,77119 0,412774 ADA087DLS5 Large ribosomal subunit protein bL33 0,940223 0,578112 ADA087DLS5 Aminotransferase 0,922586 0,285632 ADA087DNV9 1-deoxy-D-xylulose 5-phosphate reductoisomerase 0,320205 -0,270529 ADA087DNDA1 RNA methyltransferase 0,0184256 0,0073878 ADA087DRU5 Threonine synthase 2,1866 0,487389 ADA087DNS6 GTPase Era 0,00880958 0,00466474 ADA087DLG3 Aspartokinase 0,531539 0,433341 ADA087DLG3 Aspartokinase 0,571652 0,422866 ADA087DLG4 Aldo/keto reductase family oxidoreductase 0,235007 -0,142938 ADA087DLT4 Aldo/keto reductase family oxidoreductase 0,14367 -0,140616 ADA087DLS5 Pseudouridine synthase 0,167317 -0,105606 ADA087DLS6 P	A0A087DRI3	Aminopyrimidine aminohydrolase	0,162906	-0,0543722
A0A087DT17 Alpho-1,4-glucosidose 0,134016 0,0995344 A0A087DRUG Serine hydroxymethyltransferase 1,77119 0,412774 A0A087DLS5 Large ribosomal subunit protein b133 0,940223 0,578112 A0A087DP20 Aminotransferase 0,922586 0,285632 A0A087DW9 1-deoxy-D-xylulose 5-phosphate reductoisomerase 0,320205 -0,270529 A0A087DQA1 RNA methyltransferase 0,0184256 0,0073878 A0A087DRU5 Threonine synthase 2,1866 0,487389 A0A087DSN6 GFPoss Era 0,00880958 0,00466474 A0A087DLG3 Aspartokinase 0,571652 0,422866 A0A087DLG3 Aspartokinase 0,571652 0,422866 A0A087DLG4 Aldo/keto reductase family oxidoreductase 0,235007 -0,142938 A0A087DLF4 Aldo/keto reductase family oxidoreductase 0,14367 -0,140616 A0A087DB3 Dihydropteroate synthase 0,167317 -0,1050666 A0A087DB3 Dihydropteroate synthase 0,167317 -0,140616 A0A087DB3	A0A087DHH6	Pyridoxal phosphate homeostasis protein	0,0374079	-0,0259482
AOA087DRU6 Serine hydroxymethyltransferase 1,77119 0,412774 AOA087DLS5 Large ribosomal subunit protein bL33 0,940223 0,578112 AOA087DP20 Aminotransferase 0,922586 0,285632 AOA087DNV9 1-deoxy-D-xylulose 5-phosphate reductoisomerase 0,320205 -0,270529 AOA087DNDA1 RNA methyltransferase 0,0184256 0,0073878 AOA087DRU5 Threonine synthase 2,1866 0,487389 AOA087DSN6 GTPase Era 0,00880958 0,00466474 AOA087DLG3 Aspartokinase 0,531539 0,433341 AOA087DLG3 Aspartokinase 0,571652 0,422866 AOA087DLG4 ABC transporter ATP-binding protein 0,0911859 0,0915915 AOA087DL74 Alda/keto reductase family oxidoreductase 0,235007 -0,142938 AOA087DM38 Dihydropteroate synthase 0,167317 -0,105606 AOA087DM38 Jihydropteroate synthase 0,167317 -0,105606 AOA087DM39 Jipsan recognition particle receptor FtsY 0,707943 -0,438124 AOA0	A0A087DLH5	Aminotransferase	0,0830195	-0,103019
A0A087DLS5 Large ribosomal subunit protein b133 0,940223 0,578112 A0A087DP20 Aminotransferase 0,922586 0,285632 A0A087DNV9 1-deoxy-D-xylulose 5-phosphate reductoisomerase 0,320205 -0,270529 A0A087DQA1 RNA methyltransferase 0,0184256 0,0073878 A0A087DRU5 Threonine synthase 2,1866 0,487389 A0A087DSN6 GrBase Era 0,00880958 0,00466474 A0A087DLG3 Aspartokinase 0,531539 0,433341 A0A087DLG3 Aspartokinase 0,571652 0,422866 A0A087DLG4 Ald Carasporter ATP-binding protein 0,0911859 0,0915915 A0A087DLG4 Ald Carasporter ATP-binding protein 0,0911859 0,0915915 A0A087DLG4 Aldo/keto reductase family oxidoreductase 0,235007 -0,142938 A0A087DLG5 Pseudouridine synthase 0,167317 -0,105606 A0A087DLG5 Pseudouridine synthase 0,167317 -0,105606 A0A087DLG5 Alcohal dehydrogenase 0,190389 0,154443 A0A087DLG5	A0A087DT17	Alpha-1,4-glucosidase	0,134016	0,0995344
A0A087DP20 Aminotransferase 0,922586 0,285632 A0A087DNV9 1-deoxy-D-xylulose 5-phosphate reductoisomerase 0,320205 -0,270529 A0A087DQA1 RNA methyltransferase 0,0184256 0,0073878 A0A087DRUS Threonine synthase 2,1866 0,487389 A0A087DSN6 GTPase Era 0,00880958 0,00466474 A0A087DLG3 Aspartokinase 0,571652 0,422866 A0A087DLG3 Aspartokinase 0,571652 0,422866 A0A087DLG4 ABC transporter ATP-binding protein 0,0911859 0,0915915 A0A087DL74 Aldo/keto reductase family oxidoreductase 0,235007 -0,142938 A0A087DM38 Dihydropteroate synthase 0,14367 -0,140616 A0A087DM39 Dihydropteroate synthase 0,167317 -0,105606 A0A087DM5 Alchol dehydrogenase 0,190389 0,154443 A0A087DL5 Alcohol dehydrogenase 0,190389 0,154443 A0A087DL5 Signal recognition particle receptor FtsY 0,707943 -0,438124 A0A087DL5 Signal	A0A087DRU6	Serine hydroxymethyltransferase	1,77119	0,412774
AOA087DNV9 1-deoxy-D-xylulose 5-phosphate reductoisomerase 0,320205 -0,270529 AOA087DQA1 RNA methyltransferase 0,0184256 0,0073878 AOA087DRUS Threonine synthase 2,1866 0,487389 AOA087DSN6 GTPase Era 0,00880958 0,00466474 AOA087DLG3 Aspartokinase 0,531539 0,433341 AOA087DLG3 Aspartokinase 0,571652 0,422866 AOA087DLG4 ABC transporter ATP-binding protein 0,9911859 0,0915915 AOA087DLG5 ABC transporter ATP-binding protein 0,0911859 0,0915915 AOA087DLG6 ABC transporter ATP-binding protein 0,0911859 0,0915915 AOA087DLG7 Aldo/keto reductase family oxidoreductase 0,235007 -0,142938 AOA087DLG8 Pseudouridine synthase 0,14367 -0,140616 AOA087DLG8 Pseudouridine synthase 0,167317 -0,105606 AOA087DLG8 Alcohol dehydrogenase 0,190389 0,154443 AOA087DLG9 Signal recognition particle receptor FtsY 0,707943 -0,050447 <	A0A087DLS5	Large ribosomal subunit protein bL33	0,940223	0,578112
A0A087DQA1 RNA methyltransferase 0,0184256 0,0073878 A0A087DRU5 Threonine synthase 2,1866 0,487389 A0A087DSN6 GTPase Era 0,00880958 0,00466474 A0A087DS15 Long-chain-fatty-acidCoA ligase 0,531539 0,433341 A0A087DLC3 Aspartokinase 0,571652 0,422866 A0A087DLT4 Aldo/keto reductase family oxidoreductase 0,0915915 A0A087DLT3 Aldo/keto reductase family oxidoreductase 0,235007 -0,142938 A0A087DLT4 Aldo/keto reductase family oxidoreductase 0,235007 -0,142938 A0A087DM38 Dihydropteroate synthase 0,14367 -0,140616 A0A087DM55 Pseudouridine synthase 0,167317 -0,105606 A0A087DM53 Alcohal dehydrogenase 0,190389 0,154443 A0A087DM53 Alcohal dehydrogenase 0,190389 0,154443 A0A087DL9 Signal recognition particle receptor FtsY 0,707943 -0,438124 A0A087DL9 Signal recognition particle receptor FtsY 0,707943 -0,438124 A0A087DL9	A0A087DP20	Aminotransferase	0,922586	0,285632
AOA087DRUS Threonine synthase 2,1866 0,487389 AOA087DSN6 GTPase Era 0,00880958 0,00466474 AOA087DS15 Long-chain-fatty-acid—CoA ligase 0,531539 0,433341 AOA087DLC3 Aspartokinase 0,571652 0,422866 AOA087DLL6 ABC transporter ATP-binding protein 0,0911859 0,0915915 AOA087DL74 Aldo/keto reductase family oxidoreductase 0,235007 -0,142938 AOA087DM38 Dihydropteroate synthase 0,14367 -0,140616 AOA087DNE3 Aicohal dehydrogenase 0,190389 0,154443 AOA087DT87 DUF2961 domain-containing protein 0,00949895 -0,00505447 AOA087DL15 non-specific serine/threonine protein kinase 0,252224 0,170164 AOA087DT90 tRNA/rRNA methyltransferase protein 0,290882 -0,199402 AOA087DMR4 4Fe-45 ferredoxin iron-sulfur binding domain-containing protein 0,363991 0,574808 AOA087DMP2 Ribosomal RNA large subunit methyltransferase H 0,0291926 0,0240154 AOA087DNM6 ABC transporter ATP-binding protein	A0A087DNV9	1-deoxy-D-xylulose 5-phosphate reductoisomerase	0,320205	-0,270529
AOA087DSN6 GTPase Era 0,00880958 0,00466474 AOA087DSI5 Long-chain-fatty-acid—CoA ligase 0,531539 0,433341 AOA087DLC3 Aspartokinase 0,571652 0,422866 AOA087DLL6 ABC transporter ATP-binding protein 0,0911859 0,0915915 AOA087DL74 Aldo/keto reductase family oxidoreductase 0,235007 -0,142938 AOA087DM38 Dihydropteroate synthase 0,14367 -0,140616 AOA087DSE5 Pseudouridine synthase 0,167317 -0,105606 AOA087DM63 Alcohol dehydrogenase 0,190389 0,154443 AOA087DT87 DUF2961 domain-containing protein 0,00949895 -0,00505447 AOA087DL95 Signal recognition particle receptor FtsY 0,707943 -0,438124 AOA087DL15 non-specific serine/threonine protein kinase 0,252224 0,170164 AOA087DT90 tRiNA/rRNA methyltransferase protein 0,290882 -0,199402 AOA087DL19 Ribonuclease G 0,247358 -0,121449 AOA087DMR4 4Fe-45 ferredoxin iron-sulfur binding domain-containing protein 0,363991 <td>A0A087DQA1</td> <td>RNA methyltransferase</td> <td>0,0184256</td> <td>0,0073878</td>	A0A087DQA1	RNA methyltransferase	0,0184256	0,0073878
A0A087DSI5 Long-chain-fatty-acidCoA ligase 0,531539 0,433341 A0A087DLC3 Aspartokinase 0,571652 0,422866 A0A087DLL6 ABC transporter ATP-binding protein 0,0911859 0,0915915 A0A087DL74 Aldo/keto reductase family oxidoreductase 0,235007 -0,142938 A0A087DM38 Dihydropteroate synthase 0,14367 -0,140616 A0A087DBE5 Pseudouridine synthase 0,167317 -0,105606 A0A087DM83 Alcohol dehydrogenase 0,190389 0,154443 A0A087DR5 Pseudouridine synthase 0,190389 0,154443 A0A087DR5 Pseudouridine synthase 0,190389 0,154443 A0A087DR5 DUF2961 domain-containing protein 0,00949895 -0,00505447 A0A087DR5 DUF2961 domain-containing protein kinase 0,252224 0,170164 A0A087DL5 Signal recognition particle receptor FtsY 0,707943 -0,438124 A0A087DL9 tRNA/rRNA methyltransferase protein 0,290882 -0,199402 A0A087DL9 Ribonuclease G 0,247358 -0,121449 <	A0A087DRU5	Threonine synthase	2,1866	0,487389
A0A087DLC3 Aspartokinase 0,571652 0,422866 A0A087DLL6 ABC transporter ATP-binding protein 0,0911859 0,0915915 A0A087DL74 Aldo/keto reductase family oxidoreductase 0,235007 -0,142938 A0A087DM38 Dihydropteroate synthase 0,14367 -0,140616 A0A087DSE5 Pseudouridine synthase 0,167317 -0,105606 A0A087DME3 Alcohol dehydrogenase 0,190389 0,154443 A0A087DT87 DUF2961 domain-containing protein 0,00949895 -0,00505447 A0A087DL95 Signal recognition particle receptor FtsY 0,707943 -0,438124 A0A087DL15 non-specific serine/threonine protein kinase 0,252224 0,170164 A0A087DT90 tRNA/rRNA methyltransferase protein 0,290882 -0,199402 A0A087DL19 Ribonuclease G 0,247358 -0,121449 A0A087DMR4 4Fe-45 ferredoxin iron-sulfur binding domain-containing protein 0,363991 0,574808 A0A087DK6 ABC transporter ATP-binding protein 0,485521 0,134962 A0A087DLP4 Oxidoreductase 0,158501 </td <td>A0A087DSN6</td> <td>GTPase Era</td> <td>0,00880958</td> <td>0,00466474</td>	A0A087DSN6	GTPase Era	0,00880958	0,00466474
A0A087DLL6 ABC transporter ATP-binding protein 0,0911859 0,0915915 A0A087DL74 Aldo/keto reductase family oxidoreductase 0,235007 -0,142938 A0A087DM38 Dihydropteroate synthase 0,14367 -0,140616 A0A087DSE5 Pseudouridine synthase 0,167317 -0,105606 A0A087DME3 Alcohol dehydrogenase 0,190389 0,154443 A0A087DT87 DUF2961 domain-containing protein 0,00949895 -0,00505447 A0A087DL95 Signal recognition particle receptor FtsY 0,707943 -0,438124 A0A087DL15 non-specific serine/threonine protein kinase 0,252224 0,170164 A0A087DT90 tRNA/rRNA methyltransferase protein 0,290882 -0,199402 A0A087DL19 Ribonuclease G 0,247358 -0,121449 A0A087DMR4 4Fe-4S ferredoxin iron-sulfur binding domain-containing protein 0,363991 0,574808 A0A087DM92 Ribosomal RNA large subunit methyltransferase H 0,0291926 0,0240154 A0A087DLP4 Oxidoreductase 0,158501 0,0639426 A0A087DNM6 ABC transporter, ATP-bind	A0A087DSI5	Long-chain-fatty-acidCoA ligase	0,531539	0,433341
A0A087DL74 Aldo/keto reductase family oxidoreductase 0,235007 -0,142938 A0A087DM38 Dihydropteroate synthase 0,14367 -0,140616 A0A087DSES Pseudouridine synthase 0,167317 -0,105606 A0A087DME3 Alcohol dehydrogenase 0,199389 0,154443 A0A087DT87 DUF2961 domain-containing protein 0,00949895 -0,00505447 A0A087DL95 Signal recognition particle receptor FtsY 0,707943 -0,438124 A0A087DL15 non-specific serine/threonine protein kinase 0,252224 0,170164 A0A087DT90 tRNA/rRNA methyltransferase protein 0,290882 -0,199402 A0A087DL19 Ribonuclease G 0,247358 -0,121449 A0A087DMR4 4Fe-4S ferredoxin iron-sulfur binding domain-containing protein 0,363991 0,574808 A0A087DM92 Ribosomal RNA large subunit methyltransferase H 0,0291926 0,0240154 A0A087DL94 Oxidoreductase 0,158501 0,0639426 A0A087DNM6 ABC transporter, ATP-binding protein 0,458786 0,23255 A0A087DL50 Lacl-type transcriptional r	A0A087DLC3	Aspartokinase	0,571652	0,422866
A0A087DM38 Dihydropteroate synthase 0,14367 -0,140616 A0A087DSE5 Pseudouridine synthase 0,167317 -0,105606 A0A087DME3 Alcohol dehydrogenase 0,190389 0,154443 A0A087DT87 DUF2961 domain-containing protein 0,00949895 -0,00505447 A0A087DL95 Signal recognition particle receptor FtsY 0,707943 -0,438124 A0A087DL15 non-specific serine/threonine protein kinase 0,252224 0,170164 A0A087DT90 tRNA/rRNA methyltransferase protein 0,290882 -0,199402 A0A087DL19 Ribonuclease G 0,247358 -0,121449 A0A087DMR4 4Fe-4S ferredoxin iron-sulfur binding domain-containing protein 0,363991 0,574808 A0A087DM92 Ribosomal RNA large subunit methyltransferase H 0,0291926 0,0240154 A0A087DLP4 Oxidoreductase 0,158501 0,0639426 A0A087DLP4 Oxidoreductase 0,158501 0,0639426 A0A087DKY1 Thioredoxin reductase 0,224463 0,394168 A0A087DL50 LacI-type transcriptional regulator 0,0588259	A0A087DLL6	ABC transporter ATP-binding protein	0,0911859	0,0915915
A0A087DSE5 Pseudouridine synthase 0,167317 -0,105606 A0A087DME3 Alcohol dehydrogenase 0,190389 0,154443 A0A087DT87 DUF2961 domain-containing protein 0,00949895 -0,00505447 A0A087DL95 Signal recognition particle receptor FtsY 0,707943 -0,438124 A0A087DL15 non-specific serine/threonine protein kinase 0,252224 0,170164 A0A087DT90 tRNA/rRNA methyltransferase protein 0,290882 -0,199402 A0A087DLL9 Ribonuclease G 0,247358 -0,121449 A0A087DMR4 4Fe-4S ferredoxin iron-sulfur binding domain-containing protein 0,363991 0,574808 A0A087DM92 Ribosomal RNA large subunit methyltransferase H 0,0291926 0,0240154 A0A087DK6 ABC transporter ATP-binding protein 0,485521 0,134962 A0A087DLP4 Oxidoreductase 0,158501 0,0639426 A0A087DKY1 Thioredoxin reductase 0,224463 0,394168 A0A087DL50 Lacl-type transcriptional regulator 0,088259 0,0877647 A0A087DL71 Lacl-type transcriptional regulator </td <td>A0A087DL74</td> <td>Aldo/keto reductase family oxidoreductase</td> <td>0,235007</td> <td>-0,142938</td>	A0A087DL74	Aldo/keto reductase family oxidoreductase	0,235007	-0,142938
A0A087DME3 Alcohol dehydrogenase 0,190389 0,154443 A0A087DT87 DUF2961 domain-containing protein 0,00949895 -0,00505447 A0A087DL95 Signal recognition particle receptor FtsY 0,707943 -0,438124 A0A087DL15 non-specific serine/threonine protein kinase 0,252224 0,170164 A0A087DT90 tRNA/rRNA methyltransferase protein 0,290882 -0,199402 A0A087DL19 Ribonuclease G 0,247358 -0,121449 A0A087DMR4 4Fe-4S ferredoxin iron-sulfur binding domain-containing protein 0,363991 0,574808 A0A087DM92 Ribosomal RNA large subunit methyltransferase H 0,0291926 0,0240154 A0A087DK6 ABC transporter ATP-binding protein 0,485521 0,134962 A0A087DLP4 Oxidoreductase 0,158501 0,0639426 A0A087DNM6 ABC transporter, ATP-binding protein 0,458786 0,23255 A0A087DK71 Thioredoxin reductase 0,224463 0,394168 A0A087DL50 Lacl-type transcriptional regulator 0,0888259 0,0877647 A0A087DT21 Lacl-type transcriptiona	A0A087DM38	Dihydropteroate synthase	0,14367	-0,140616
A0A087DT87 DUF2961 domain-containing protein 0,00949895 -0,00505447 A0A087DL95 Signal recognition particle receptor FtsY 0,707943 -0,438124 A0A087DL15 non-specific serine/threonine protein kinase 0,252224 0,170164 A0A087DT90 tRNA/rRNA methyltransferase protein 0,290882 -0,199402 A0A087DLL9 Ribonuclease G 0,247358 -0,121449 A0A087DMR4 4Fe-4S ferredoxin iron-sulfur binding domain-containing protein 0,363991 0,574808 A0A087DM92 Ribosomal RNA large subunit methyltransferase H 0,0291926 0,0240154 A0A087DK6 ABC transporter ATP-binding protein 0,485521 0,134962 A0A087DLP4 Oxidoreductase 0,158501 0,0639426 A0A087DNM6 ABC transporter, ATP-binding protein 0,458786 0,23255 A0A087DKY1 Thioredoxin reductase 0,224463 0,394168 A0A087DL50 Laci-type transcriptional regulator 0,0888259 0,0877647 A0A087DT21 Laci-type transcriptional regulator 0,012321 0,0593726	A0A087DSE5	Pseudouridine synthase	0,167317	-0,105606
A0A087DL95 Signal recognition particle receptor FtsY 0,707943 -0,438124 A0A087DL15 non-specific serine/threonine protein kinase 0,252224 0,170164 A0A087DT90 tRNA/rRNA methyltransferase protein 0,290882 -0,199402 A0A087DL19 Ribonuclease G 0,247358 -0,121449 A0A087DMR4 4Fe-4S ferredoxin iron-sulfur binding domain-containing protein 0,363991 0,574808 A0A087DM92 Ribosomal RNA large subunit methyltransferase H 0,0291926 0,0240154 A0A087DSK6 ABC transporter ATP-binding protein 0,485521 0,134962 A0A087DLP4 Oxidoreductase 0,158501 0,0639426 A0A087DNM6 ABC transporter, ATP-binding protein 0,458786 0,23255 A0A087DKY1 Thioredoxin reductase 0,224463 0,394168 A0A087DL50 Lacl-type transcriptional regulator 0,0888259 0,0877647 A0A087DT21 Lacl-type transcriptional regulator 0,112321 0,0593726	A0A087DME3	Alcohol dehydrogenase	0,190389	0,154443
A0A087DL15 non-specific serine/threonine protein kinase 0,252224 0,170164 A0A087DT90 tRNA/rRNA methyltransferase protein 0,290882 -0,199402 A0A087DLL9 Ribonuclease G 0,247358 -0,121449 A0A087DMR4 4Fe-4S ferredoxin iron-sulfur binding domain-containing protein 0,363991 0,574808 A0A087DM92 Ribosomal RNA large subunit methyltransferase H 0,0291926 0,0240154 A0A087DSK6 ABC transporter ATP-binding protein 0,485521 0,134962 A0A087DLP4 Oxidoreductase 0,158501 0,0639426 A0A087DNM6 ABC transporter, ATP-binding protein 0,458786 0,23255 A0A087DKY1 Thioredoxin reductase 0,224463 0,394168 A0A087DL50 Lacl-type transcriptional regulator 0,0888259 0,0877647 A0A087DT21 Lacl-type transcriptional regulator 0,112321 0,0593726	A0A087DT87	DUF2961 domain-containing protein	0,00949895	-0,00505447
A0A087DT90 tRNA/rRNA methyltransferase protein 0,290882 -0,199402 A0A087DLL9 Ribonuclease G 0,247358 -0,121449 A0A087DMR4 4Fe-4S ferredoxin iron-sulfur binding domain-containing protein 0,363991 0,574808 A0A087DM92 Ribosomal RNA large subunit methyltransferase H 0,0291926 0,0240154 A0A087DSK6 ABC transporter ATP-binding protein 0,485521 0,134962 A0A087DLP4 Oxidoreductase 0,158501 0,0639426 A0A087DNM6 ABC transporter, ATP-binding protein 0,458786 0,23255 A0A087DKY1 Thioredoxin reductase 0,224463 0,394168 A0A087DL50 Lacl-type transcriptional regulator 0,0888259 0,0877647 A0A087DT21 Lacl-type transcriptional regulator 0,112321 0,0593726	A0A087DL95	Signal recognition particle receptor FtsY	0,707943	-0,438124
A0A087DLL9 Ribonuclease G 0,247358 -0,121449 A0A087DMR4 4Fe-4S ferredoxin iron-sulfur binding domain-containing protein 0,363991 0,574808 A0A087DM92 Ribosomal RNA large subunit methyltransferase H 0,0291926 0,0240154 A0A087DSK6 ABC transporter ATP-binding protein 0,485521 0,134962 A0A087DLP4 Oxidoreductase 0,158501 0,0639426 A0A087DNM6 ABC transporter, ATP-binding protein 0,458786 0,23255 A0A087DKY1 Thioredoxin reductase 0,224463 0,394168 A0A087DL50 Lacl-type transcriptional regulator 0,0888259 0,0877647 A0A087DT21 Lacl-type transcriptional regulator 0,112321 0,0593726	A0A087DL15	non-specific serine/threonine protein kinase	0,252224	0,170164
A0A087DMR4 4Fe-4S ferredoxin iron-sulfur binding domain-containing protein 0,363991 0,574808 A0A087DM92 Ribosomal RNA large subunit methyltransferase H 0,0291926 0,0240154 A0A087DSK6 ABC transporter ATP-binding protein 0,485521 0,134962 A0A087DLP4 Oxidoreductase 0,158501 0,0639426 A0A087DNM6 ABC transporter, ATP-binding protein 0,458786 0,23255 A0A087DKY1 Thioredoxin reductase 0,224463 0,394168 A0A087DL50 Lacl-type transcriptional regulator 0,0888259 0,0877647 A0A087DT21 Lacl-type transcriptional regulator 0,112321 0,0593726	A0A087DT90	tRNA/rRNA methyltransferase protein	0,290882	-0,199402
A0A087DM92 Ribosomal RNA large subunit methyltransferase H 0,0291926 0,0240154 A0A087DSK6 ABC transporter ATP-binding protein 0,485521 0,134962 A0A087DLP4 Oxidoreductase 0,158501 0,0639426 A0A087DNM6 ABC transporter, ATP-binding protein 0,458786 0,23255 A0A087DKY1 Thioredoxin reductase 0,224463 0,394168 A0A087DL50 LacI-type transcriptional regulator 0,0888259 0,0877647 A0A087DT21 LacI-type transcriptional regulator 0,112321 0,0593726	A0A087DLL9	Ribonuclease G	0,247358	-0,121449
A0A087DM92 Ribosomal RNA large subunit methyltransferase H 0,0291926 0,0240154 A0A087DSK6 ABC transporter ATP-binding protein 0,485521 0,134962 A0A087DLP4 Oxidoreductase 0,158501 0,0639426 A0A087DNM6 ABC transporter, ATP-binding protein 0,458786 0,23255 A0A087DKY1 Thioredoxin reductase 0,224463 0,394168 A0A087DL50 LacI-type transcriptional regulator 0,0888259 0,0877647 A0A087DT21 LacI-type transcriptional regulator 0,112321 0,0593726	A0A087DMR4	4Fe-4S ferredoxin iron-sulfur binding domain-containing protein	0,363991	0,574808
A0A087DSK6 ABC transporter ATP-binding protein 0,485521 0,134962 A0A087DLP4 Oxidoreductase 0,158501 0,0639426 A0A087DNM6 ABC transporter, ATP-binding protein 0,458786 0,23255 A0A087DKY1 Thioredoxin reductase 0,224463 0,394168 A0A087DL50 LacI-type transcriptional regulator 0,0888259 0,0877647 A0A087DT21 LacI-type transcriptional regulator 0,112321 0,0593726	A0A087DM92			0,0240154
A0A087DLP4 Oxidoreductase 0,158501 0,0639426 A0A087DNM6 ABC transporter, ATP-binding protein 0,458786 0,23255 A0A087DKY1 Thioredoxin reductase 0,224463 0,394168 A0A087DL50 LacI-type transcriptional regulator 0,0888259 0,0877647 A0A087DT21 LacI-type transcriptional regulator 0,112321 0,0593726	A0A087DSK6			
A0A087DNM6 ABC transporter, ATP-binding protein 0,458786 0,23255 A0A087DKY1 Thioredoxin reductase 0,224463 0,394168 A0A087DL50 LacI-type transcriptional regulator 0,0888259 0,0877647 A0A087DT21 LacI-type transcriptional regulator 0,112321 0,0593726			·	
A0A087DKY1 Thioredoxin reductase 0,224463 0,394168 A0A087DL50 LacI-type transcriptional regulator 0,0888259 0,0877647 A0A087DT21 LacI-type transcriptional regulator 0,112321 0,0593726			·	
A0A087DL50 LacI-type transcriptional regulator 0,0888259 0,0877647 A0A087DT21 LacI-type transcriptional regulator 0,112321 0,0593726		<u> </u>		
A0A087DT21 LacI-type transcriptional regulator 0,112321 0,0593726				·
				·

ADA087D1G8 Single-stranded DNA-binding protein 0,826078 0,282192 ADA087D171 Thizzole synthase 0,00495191 0,00352478 ADA087D0273 Thizzole synthase 0,00495191 0,00352478 ADA087D0273 1-(5-phosphoribosyl)-5-([5-phosphoribosylamino]methylideneamino] 1,0050051 0,0157988	A0A087DLE9	MIFH/D	0,353356	0,422851
ADA087DSC7 Heat-inducible transcription repressor HrcA 0,720051 -0,157985	A0A087DHG8	Single-stranded DNA-binding protein	0,826078	0,282192
1-(5-phosphoribosiy)-1-(15-phosphoribosylamino) methylideneamino	A0A087DL71	Thiazole synthase	0,00495191	0,00352478
ADABSTOCA23 Imidazole-4-corboxamide isomerase 2,35744 0,346771 ADABORTOSIG Orotidine 5'-phosphate decarboxylose 1,31142 0,540488 ADABORTOSIG Peptide deformylose 0,688239 0,247025 ADABORTOSIS Reductase 0,567078 0,444543 ADABORTOSIS Reductase 0,567078 0,444543 ADABORTONINA Oucharacterized protein 0,268319 0,252985 ADABORTONINA Capsular exopolysaccharide family protein 0,312833 0,201012 ADABORTONINA Capsular exopolysaccharide family protein 0,312833 0,20012 ADABORTONINA Capsular exopolysaccharide family protein 0,312833 0,20012 ADABORTONINA Ristidine kinase-like protein 0,948846 0,471938 ADABORTONIN Integral membrane protein 0,948846 0,471938 ADABORTONIN Amidaphasphoribosyltransferase 0,770711 0,211639 ADABORTONIN Amidaphasphoribosyltransferase 0,770711 0,211639 ADABORTONIN Amidaphasphoribosyltransferase 0,770711 0,211639 ADABORTONIN Amidaphasphoribosyltransferase 0,0707 0,125007 ADABORTONIN Amidaphasphoribosyltransferase 0,0707 0,125007 ADABORTONIN Arthine phosphoribosyltransferase 0,15405 0,141254 ADABORTONIN tryptophan-tRNA ligase 0,749998 0,48463 ADABORTONIN tryptophan-tRNA ligase 0,749998 0,48463 ADABORTONIN Poptide ABC transporter permease 0,688377 0,141561 ADABORTONIN Poptide ABC transporter permease 0,688377 0,141561 ADABORTONIT Integrative transaminase 0,427692 0,0990423 ADABORTONIT Transmembrane protein 0,976313 0,316575 ADABORTONIT Transmembrane protein 0,976313 0,316575 ADABORTONIT Transmembrane protein 0,076313 0,41924 ADABORTONIT Transmembrane protein 0,076313 0,41924 ADABORTONIT Transmembrane protein 0,08231 0,0970687 ADABORTONIT Transmembrane protein 0,08531 0,0971418 ADABORTONIT Transmembrane protein 0,08531 0,0971418 ADABORTONIT Transmembrane protein 0,08531 0,0971418 ADABORTONIN Protein-disulfide isomerase 0,694194 0,4857 ADABORTONIN Protein-disulf	A0A087DSC7	Heat-inducible transcription repressor HrcA	0,720051	-0,157985
AQA087DSJ6 Orotidine 5'-phosphate decarboxylase 1,31142 0,540488 AQA087DSJ69 Peptide deformylase 0,688239 0,247025 AQA087DQS9 PfkB family sugar kinase 0,691473 0,274827 AQA087DNN4 Uncharacterized protein 0,268319 0,252985 AQA087DNN4 Uncharacterized protein 0,268319 0,252985 AQA087DNN8 Capsular exopolysaccharide family protein 0,312833 0,20012 AQA087DNN8 Capsular exopolysaccharide family protein 0,312833 0,20012 AQA087DRD1 rikhdine kinase-like protein 0,90614811 0,00519943 AQA087DRD1 Integral membrane protein 0,948846 0,471938 AQA087DNF0 Amidophosphoribosyltransferase 0,770711 0,211639 AQA087DNF1 Integral membrane protein 0,948846 0,471938 AQA087DNF2 Amidophosphoribosyltransferase 0,770711 0,211639 AQA087DNF3 Xanthine phosphoribosyltransferase 0,7077 0,125007 AQA087DNF3 Xanthine phosphoribosyltransferase 0,0707 0,125007 AQA087DDNF0 GTP pyraphosphokinase 0,15405 0,141254 AQA087DNF1 Vilytophan-IRNA ligase 0,137651 0,195379 AQA087DNF1 Vilytophan-IRNA ligase 0,137651 0,195379 AQA087DNF1 Vil' damain protein 0,0749282 0,058958 AQA087DNF1 IciR-type transcriptional regulator 0,890562 0,300988 AQA087DNF1 IciR-type transcriptional regulator 0,890562 0,300988 AQA087DNC4 Transcriptional regulator 0,776313 0,316575 AQA087DNC4 Ribosome-binding factor A 0,0737418 0,0370687 AQA087DNC4 Ribosome-binding factor A 0,0737418 0,03109 AQA087DNC4 Ribosome-binding factor A 0,073419 0,049194 AQA087DNC4 Ribosome-binding factor Fi 0,058318 0,122798 AQA087DNC4 Ribosome-binding factor Fi 0,058318 0,122798 AQA087DNC4 Ribosome-binding factor Fi 0,058318 0,122798 AQA087DNC5 Vil' Amater acid Rot Iri-1 0,585318 0,122798 AQA087DNC6 Companylate kinase 0,694194 0,4857 AQA087DNC8 Vil' Amater Abel transporter 0,076405 0,05893106 AQA087DNC8 Vil' Adamater Abel transporter 0,076405 0,0589106 AQA087DNC8 Colu				
AOA087DSH9 Peptide deformylose 0,688239 0,247025 AOA087DOSH9 PRB family sugar kinase 0,567078 0,444543 AOA087DSH81 Reductase 0,691473 -0,274827 AOA087DNN40 Uncharacterized protein 0,268319 0,252985 AOA087DNN81 Capsular exopolysaccharide family protein 0,312833 -0,20012 AOA087DRRD rikNa methylase 0,00614811 0,00519943 AOA087DRRD Histidine kinse-like protein 0,803814 0,537439 AOA087DNR7 Integral membrane protein 0,948846 -0,471938 AOA087DNR7 Amidophosphoribosyltransferase 0,770711 0,211639 AOA087DNR8 Xanthine phosphoribosyltransferase 0,0707 -0,125007 AOA087DNR8 Xanthine phosphoribosyltransferase 0,0707 -0,125007 AOA087DNR9 GTP pyraphosphokinase 0,15405 0,141254 AOA087DNR1 tryptophon-tRNA ligase 0,749988 0,448463 AOA087DNR1 tryptophon-tENA ligase 0,137651 0,195379 AOA087DNR3 ribo	A0A087DQ23	imidazole-4-carboxamide isomerase	2,35744	0,336771
AQAQ87DQ59 Pfk8 family sugar kinase 0,567078 0,444543 AQAQ87DS81 Reductase 0,691473 -0,274827 AQAQ87DNN4 Uncharacterized protein 0,268319 0,252985 AQAQ87DNN8 Capsular expoplysaccharide family protein 0,312833 -0,20012 AQAQ87DNRD rRNA methylase 0,00614811 0,00519943 AQAQ87DNDR Histidine kinase-like protein 0,803814 0,537439 AQAQ87DNDR Histidine kinase-like protein 0,948846 -0,471938 AQAQ87DNDF Amidophosphoribosyltransferase 0,770711 0,211639 AQAQ87DNDR Amidophosphoribosyltransferase 0,77071 0,215097 AQAQ87DNDR Amidophosphorihosyltransferase 0,0707 -0,125007 AQAQ87DNDR Aminic phosphorihosinase 0,15405 0,141254 AQAQ87DNDR Arribosylhomocysteine lyase 0,15405 0,141254 AQAQ87DNBT S-ribosylhomocysteine lyase 0,137651 0,195379 AQAQ87DNBT Wr. domain protein 0,0749282 0,05990423 AQAQ87DNBT <	A0A087DSJ6	Orotidine 5'-phosphate decarboxylase	1,31142	0,540488
AOA087DS81 Reductase 0,691473 -0,274827 AOA087DNNNA Uncharacterized protein 0,268319 0,252985 AOA087DNNS Capsular exopolysaccharide family protein 0,312833 -0,20012 AOA087DND RNA methylose 0,00614811 0,0051943 AOA087DRDR Histidine kinase-like protein 0,803814 0,537439 AOA087DNFO Amidophosphoribosyltransferase 0,770711 0,211639 AOA087DMFO Amidophosphoribosyltransferase 0,770711 0,215639 AOA087DMFO Amidophosphoribosyltransferase 0,70707 -0,125007 AOA087DMFO GTP pyrophosphoribosyltransferase 0,0707 -0,125007 AOA087DMFO GTP pyrophosphoribosyltransferase 0,15405 0,141254 AOA087DMFO GTP pyrophosphoribosyltransferase 0,15405 0,141254 AOA087DMFO S-ribosylhomocysteine lyase 0,137651 0,195379 AOA087DMFO Peptide ABC transporter permease 0,688377 -0,141561 AOA087DMFO Peptide ABC transporter permease 0,688377 -0,141561	A0A087DSH9	Peptide deformylase	0,688239	0,247025
AQA087DNN4 Uncharacterized protein 0,268319 0,252985 AQA087DNN8 Capsular exopolysaccharide family protein 0,312833 -0,20012 AQA087DRLD rRNA methylase 0,00614811 0,00519943 AQA087DRDR Histldine kinse-like protein 0,803814 0,537439 AQA087DRDR Integral membrane protein 0,948846 -0,471938 AQA087DMFO Amidophosphoribosyltransferase 0,770711 0,211639 AQA087DSRS Xanthine phosphoribosyltransferase 0,70707 -0,125007 AQA087DSRS Xanthine phosphoribosyltransferase 0,0707 -0,125007 AQA087DL96 GTP pyrophosphokinase 0,15405 0,141254 AQA087DL96 GTP pyrophosphokinase 0,15405 0,141254 AQA087DL97 S-ribosylhomocysteine lyase 0,137651 0,195379 AQA087DL98 S-ribosylhomocysteine lyase 0,137651 0,195379 AQA087DL94 S-ribosylhomocysteine lyase 0,688377 -0,141561 AQA087DL95 Peptide ABC transporter permease 0,688377 -0,141561 <	A0A087DQ59	PfkB family sugar kinase	0,567078	0,444543
AQA087DNN8 Capsular exopolysaccharide family protein 0,312833 -0,20012 AQA087DRLO rRNA methylase 0,00614811 0,00519943 AQA087DRDS Histidine kinase-like protein 0,803814 0,537439 AQA087DRD7 Integral membrane protein 0,948846 -0,471938 AQA087DRD6 Amidophosphoribosyltransferase 0,770711 0,211639 AQA087DRD72 threonine ammonia-lyase 1,18421 0,401504 AQA087DLS6 Xanthine phosphoribosyltransferase 0,0707 -0,125007 AQA087DLD4 tryptophon-tRNA ligase 0,75405 0,141254 AQA087DLD4 tryptophon-tRNA ligase 0,137651 0,195379 AQA087DLD4 tryptophon-tRNA ligase 0,137651 0,195379 AQA087DLS51 WYL domain protein 0,0749282 0,0598958 AQA087DLS52 WYL domain protein 0,0749282 0,0598958 AQA087DLY2 lick-type transcriptional regulator 0,688377 -0,141561 AQA087DLY3 lick-type transcriptional regulator 0,890562 0,30988 AQA087DL	A0A087DS81	Reductase	0,691473	-0,274827
A0A087DRLO rRNA methylase 0,00614811 0,00519943 A0A087DRDR Histidine kinase-like protein 0,803814 0,537439 A0A087DRJ7 Integral membrane protein 0,948846 -0,471938 A0A087DMFO Amidophosphoribosyltransferase 0,770711 0,211639 A0A087DTZ threenine ammanio-lyase 1,18421 0,401504 A0A087DSR8 Xanthine phosphoribosyltransferase 0,0707 -0,125007 A0A087DQE9 GTP pyrophosphokinase 0,15405 0,141254 A0A087DL04 tryptophan-tRNA ligase 0,749998 0,448463 A0A087DL95 S-ribosylhomocysteine lyase 0,137651 0,195379 A0A087DST S-ribosylhomocysteine lyase 0,688377 -0,141561 A0A087DST Iciral phosphoserine transaminase 0,427692 -0,0990423 A0A087DLF7	A0A087DNN4	Uncharacterized protein	0,268319	0,252985
A0A087DKD8 Histidine kinase-like protein 0,803814 0,537439 A0A087DRJ7 Integral membrane protein 0,948846 -0,471938 A0A087DMF0 Amidophosphoribosyltransferase 0,770711 0,211639 A0A087DT72 threonine ammonia-lyase 1,18421 0,401504 A0A087DRS8 Xanthine phosphoribosyltransferase 0,0707 -0,125007 A0A087DQE9 GTP pyrophosphokinase 0,15405 0,141254 A0A087DL04 tryptophan-tRNA ligase 0,749998 0,448463 A0A087DL04 tryptophan-tRNA ligase 0,137651 0,195379 A0A087DMB7 S-ribosylhomocysteine lyase 0,137651 0,195379 A0A087DMB7 S-ribosylhomocysteine lyase 0,0749282 0,0598958 A0A087DMB1 WYL domain protein 0,0742822 0,0598958 A0A087DMB1 phosphoserine transaminase 0,427692 -0,0990423 A0A087DMB1 phosphoserine transaminase 0,427692 -0,0990423 A0A087DLYA lick-type transcriptional regulator 0,890562 0,30988 A0A087DLYA	A0A087DNN8	Capsular exopolysaccharide family protein	0,312833	-0,20012
AOA087DRJ7 Integral membrane protein 0,948846 -0,471938 AOA087DMF0 Amidophosphoribosyltransferase 0,770711 0,211639 AOA087DT72 threonine ammonia-lyase 1,18421 0,401504 AOA087DSR8 Xanthine phosphoribosyltransferase 0,0707 -0,125007 AOA087DQE9 GTP pyrophosphokinase 0,15405 0,141254 AOA087DUL0 tryptophan-tRNA ligase 0,749998 0,448463 AOA087DMB7 5-ribosylhomocysteine lyase 0,137651 0,195379 AOA087DMB7 5-ribosylhomocysteine lyase 0,688377 -0,141561 AOA087DSE1 WYL domain protein 0,0749282 0,0598958 AOA087DM11 phosphoserine transaminase 0,688377 -0,141561 AOA087DLF7 IcIR-type transcriptional regulator 0,88362 0,309988 AOA087DLF7 IcIR-type transcriptional regulator 0,776313 0,316575 AOA087DKC4 Transcriptional regulator 0,776313 0,316575 AOA087DKA Ribosome-binding factor A 0,0737418 -0,033109 AOA087DLA<	A0A087DRL0	rRNA methylase	0,00614811	0,00519943
A0A087DMF0 Amidophosphoribosyltransferase 0,770711 0,211639 A0A087DT72 threonine ammonia-lyase 1,18421 0,401504 A0A087DSR8 Xanthine phosphoribosyltransferase 0,0707 -0,125007 A0A087DQE9 GTP pyrophosphokinase 0,15405 0,141254 A0A087DL04 tryptophan-tRNA ligase 0,749998 0,48463 A0A087DL04 tryptophan-tRNA ligase 0,137651 0,195379 A0A087DL04 tryptophan-tRNA ligase 0,137651 0,195379 A0A087DL87 S-ribosylhomocysteine lyase 0,137651 0,195379 A0A087DL96 Peptide ABC transporter permease 0,688377 -0,141561 A0A087DL11 phosphoserine transaminase 0,427692 -0,0990423 A0A087DL12 lciR-type transcriptional regulator 0,890562 0,300988 A0A087DL9 lciR-type transcriptional regulator 0,76813 0,316575 A0A087DL42 Transmembrane protein 0,222868 0,144958 A0A087DL43 Ribosome-binding factor A 0,0737418 -0,033109 A0A087DL44<	A0A087DKD8	Histidine kinase-like protein	0,803814	0,537439
A0A087DT72 threonine ammonia-lyase 1,18421 0,401504 A0A087DSR8 Xanthine phosphoribosyltransferase 0,0707 -0,125007 A0A087DQE9 GTP pyrophosphokinase 0,15405 0,141254 A0A087DUAL trytopohan-tRNA ligase 0,749988 0,448463 A0A087DMB7 S-ribosylhomocysteine lyase 0,137651 0,195379 A0A087DMB7 S-ribosylhomocysteine lyase 0,0749282 0,0598958 A0A087DSE1 WYL domain protein 0,0749282 0,0598958 A0A087DD96 Peptide ABC transporter permease 0,688377 -0,141561 A0A087DH7 IclR-type transcriptional regulator 0,890562 0,30988 A0A087DL72 IclR-type transcriptional regulator 0,68231 -0,0370687 A0A087DKC4 Transcriptional regulator 0,776313 0,316575 A0A087DL72 Transmembrane protein 0,222868 0,144958 A0A087DLA1 Lipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit MurT 0,754933 0,41924 A0A087DLA2 Jipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit MurT	A0A087DRJ7	Integral membrane protein	0,948846	-0,471938
AOA087DSR8 Xanthine phosphoribosyltronsferase 0,0707 -0,125007 AOA087DQE9 GTP pyrophosphokinase 0,15405 0,141254 AOA087DLO4 tryptophon-tRNA ligase 0,749998 0,48463 AOA087DMB7 S-ribosylhomocysteine lyase 0,137651 0,195379 AOA087DMB7 S-ribosylhomocysteine lyase 0,0749282 0,059958 AOA087DG6 Peptide ABC transporter permease 0,688377 -0,141561 AOA087DQ96 Peptide ABC transporter permease 0,427692 -0,0990423 AOA087DL77 IclR-type transcriptional regulator 0,890562 0,300988 AOA087DL72 Iranscriptional regulator 0,068231 -0,0370687 AOA087DKC4 Transcriptional regulator 0,776313 0,316575 AOA087DKC4 Transmembrane protein 0,222868 0,144958 AOA087DLY1 Ribosome-binding factor A 0,0737418 -0,033109 AOA087DLA1 Lipid Il isoglutaminyl synthase (glutamine-hydrolyzing) subunit MurT 0,754933 0,41924 AOA087DKS1 JOP-N-acetylmuramoyl-tripeptide-D-alanine ligase 0,678113 <td>A0A087DMF0</td> <td>Amidophosphoribosyltransferase</td> <td>0,770711</td> <td>0,211639</td>	A0A087DMF0	Amidophosphoribosyltransferase	0,770711	0,211639
A0A087DQE9 GTP pyrophosphokinase 0,15405 0,141254 A0A087DL04 tryptophan-tRNA ligase 0,749998 0,448463 A0A087DMB7 S-ribosylhomocysteine lyase 0,137651 0,195379 A0A087DSE1 WYL domain protein 0,0749282 0,0598958 A0A087DQ96 Peptide ABC transporter permease 0,688377 -0,141561 A0A087DM11 phosphoserine transaminase 0,427692 -0,0990423 A0A087DL7 lclR-type transcriptional regulator 0,890562 0,300988 A0A087DL83 Chromosome partitioning protein ParA 0,068231 -0,0370687 A0A087DLC4 Transcriptional regulator 0,076313 0,316575 A0A087DLC7 Transmembrane protein 0,222868 0,144958 A0A087DL74 Ribosome-binding factor A 0,0737418 -0,033109 A0A087DL74 Ribosome-binding factor A 0,0737418 -0,033109 A0A087DLX1 Protein-disulfide isomerase 0,678113 0,404665 A0A087DLX2 Protein-disulfide isomerase 0,734139 0,600154 A0A087DMS	A0A087DT72	threonine ammonia-lyase	1,18421	0,401504
AOA087DL04 tryptophan-tRNA ligase 0,749998 0,448463 AOA087DMB7 S-ribosylhomocysteine lyase 0,137651 0,195379 AOA087DSE1 WYL domain protein 0,0749282 0,0598958 AOA087DQ96 Peptide ABC transporter permease 0,688377 -0,141561 AOA087DM11 phosphoserine transaminase 0,427692 -0,0990423 AOA087DLF7 IcIR-type transcriptional regulator 0,890562 0,300988 AOA087DQ83 Chromosame partitioning protein ParA 0,068231 -0,0370687 AOA087DVC4 Transcriptional regulator 0,776313 0,316575 AOA087DY27 Transmembrane protein 0,222868 0,144958 AOA087DL41 Ribosome-binding factor A 0,0737418 -0,033109 AOA087DL42 Ribosome-binding factor A 0,0737418 -0,033109 AOA087DL41 Lipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit MurT 0,754933 0,41924 AOA087DKX1 Protein-disulfide isomerase 0,678113 0,40465 AOA087DKX1 Protein-disulfide isomerase 0,734139 0,60015	A0A087DSR8	Xanthine phosphoribosyltransferase	0,0707	-0,125007
AOA087DMB7 S-ribosylhomocysteine lyase 0,137651 0,195379 AOA087DSE1 WYL domain protein 0,0749282 0,0598958 AOA087DQ96 Peptide ABC transporter permease 0,688377 -0,141561 AOA087DM11 phosphoserine transaminase 0,427692 -0,0990423 AOA087DLF7 IcIR-type transcriptional regulator 0,890562 0,300988 AOA087DQ83 Chromosome partitioning protein ParA 0,068231 -0,0370687 AOA087DKC4 Transcriptional regulator 0,776313 0,316575 AOA087DLY2 Transmembrane protein 0,222868 0,144958 AOA087DLY4 Ribosome-binding factor A 0,0737418 -0,033109 AOA087DLA1 Lipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit MurT 0,754933 0,44924 AOA087DLX1 Protein-disulfide isomerase 0,673113 0,440465 AOA087DKX1 Protein-disulfide isomerase 0,734139 0,600154 AOA087DKX2 Translation initiation factor IF-1 0,585318 0,122798 AOA087DMG8 Guanylate kinase 0,694194 0,485	A0A087DQE9	GTP pyrophosphokinase	0,15405	0,141254
AOA087DSE1 WYL domain protein 0,0749282 0,0598958 AOA087DQ96 Peptide ABC transporter permease 0,688377 -0,141561 AOA087DM11 phosphoserine transaminase 0,427692 -0,0990423 AOA087DLF7 lclR-type transcriptional regulator 0,890562 0,300988 AOA087DQ83 Chromosome partitioning protein ParA 0,068231 -0,0370687 AOA087DKC4 Transcriptional regulator 0,776313 0,316575 AOA087DY27 Transmembrane protein 0,222868 0,144958 AOA087DLY4 Ribosome-binding factor A 0,0737418 -0,033109 AOA087DLA1 Lipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit MurT 0,754933 0,41924 AOA087DKX1 Protein-disulfide isomerase 0,678113 0,440465 AOA087DKX1 Protein-disulfide isomerase 0,734139 0,600154 AOA087DKX2 Translation initiation factor IF-1 0,585318 0,122798 AOA087DMG8 Guanylate kinase 0,694194 0,4857 AOA087DKB Putative amino acid ABC transporter 0,00156385 <t< td=""><td>A0A087DL04</td><td>tryptophantRNA ligase</td><td>0,749998</td><td>0,448463</td></t<>	A0A087DL04	tryptophantRNA ligase	0,749998	0,448463
AOA087DQ96 Peptide ABC transporter permease 0,688377 -0,141561 AOA087DM11 phosphoserine transaminase 0,427692 -0,0990423 AOA087DLF7 IcIR-type transcriptional regulator 0,890562 0,300988 AOA087DQ83 Chromosome partitioning protein ParA 0,068231 -0,0370687 AOA087DKC4 Transcriptional regulator 0,776313 0,316575 AOA087DP27 Transmembrane protein 0,222868 0,144958 AOA087DLY4 Ribosome-binding factor A 0,0737418 -0,033109 AOA087DLA1 Lipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit MurT 0,754933 0,41924 AOA087DLS1 UDP-N-acetylmuramoyl-tripeptideD-alanyl-D-alanine ligase 0,678113 0,440465 AOA087DKX1 Protein-disulfide isomerase 0,734139 0,600154 AOA087DLX2 Translation initiation factor IF-1 0,585318 0,122798 AOA087DM68 Guanylate kinase 0,694194 0,4857 AOA087DLE4 HPr family phosphocarrier 0,074026 -0,389222 AOA087DNK9 Glutamate ABC transporter ATP-binding pro	A0A087DMB7	S-ribosylhomocysteine lyase	0,137651	0,195379
A0A087DM11 phosphoserine transaminase 0,427692 -0,0990423 A0A087DLF7 IcIR-type transcriptional regulator 0,890562 0,300988 A0A087DQ83 Chromosome partitioning protein ParA 0,068231 -0,0370687 A0A087DKC4 Transcriptional regulator 0,776313 0,316575 A0A087DP27 Transmembrane protein 0,222868 0,144958 A0A087DLY4 Ribosome-binding factor A 0,0737418 -0,033109 A0A087DLA1 Lipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit MurT 0,754933 0,41924 A0A087DQ51 UDP-N-acetylmuramoyl-tripeptideD-alanyl-D-alanine ligase 0,678113 0,440465 A0A087DKX1 Protein-disulfide isomerase 0,734139 0,600154 A0A087DKX2 Translation initiation factor IF-1 0,585318 0,122798 A0A087DMG8 Guanylate kinase 0,694194 0,4857 A0A087DMK8 Putative amino acid ABC transporter 0,00156385 -0,00119845 A0A087DLE4 HPr family phosphocarrier 0,074026 -0,389222 A0A087DMK9 Glutamate ABC transporter ATP-bind	A0A087DSE1	WYL domain protein	0,0749282	0,0598958
A0A087DLF7 IcIR-type transcriptional regulator 0,890562 0,300988 A0A087DQ83 Chromosome partitioning protein ParA 0,068231 -0,0370687 A0A087DKC4 Transcriptional regulator 0,776313 0,316575 A0A087DP27 Transmembrane protein 0,222868 0,144958 A0A087DLY4 Ribosome-binding factor A 0,0737418 -0,033109 A0A087DLA1 Lipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit MurT 0,754933 0,41924 A0A087DL51 UDP-N-aceetylmuramoyl-tripeptide—D-alanyl-D-alanine ligase 0,678113 0,440465 A0A087DKX1 Protein-disulfide isomerase 0,734139 0,600154 A0A087DLX2 Translation initiation factor IF-1 0,585318 0,122798 A0A087DMG8 Guanylate kinase 0,694194 0,4857 A0A087DMK8 Putative amino acid ABC transporter 0,00156385 -0,00119845 A0A087DLE4 HPr family phosphocarrier 0,074026 -0,389222 A0A087DMK9 Glutamate ABC transporter ATP-binding protein 0,37491 -0,121325 A0A087DNX5 L-asparagineamido	A0A087DQ96	Peptide ABC transporter permease	0,688377	-0,141561
A0A087DQ83 Chromosome partitioning protein ParA 0,068231 -0,0370687 A0A087DKC4 Transcriptional regulator 0,776313 0,316575 A0A087DP27 Transmembrane protein 0,222868 0,144958 A0A087DLY4 Ribosome-binding factor A 0,0737418 -0,033109 A0A087DLA1 Lipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit MurT 0,754933 0,41924 A0A087DL51 UDP-N-acetylmuramoyl-tripeptideD-alanyl-D-alanine ligase 0,678113 0,440465 A0A087DKX1 Protein-disulfide isomerase 0,734139 0,600154 A0A087DLX2 Translation initiation factor IF-1 0,585318 0,122798 A0A087DMG8 Guanylate kinase 0,694194 0,4857 A0A087DMK8 Putative amino acid ABC transporter 0,0156385 -0,00119845 A0A087DR10 Protein GrpE 1,18563 -0,704693 A0A087DNK9 Glutamate ABC transporter ATP-binding protein 0,37491 -0,121325 A0A087DNX5 L-asparagineamidohydrolase 0,559261 1,25795 A0A087DNX0 Glutamate racemase 0,1866	A0A087DM11	phosphoserine transaminase	0,427692	-0,0990423
A0A087DKC4 Transcriptional regulator 0,776313 0,316575 A0A087DP27 Transmembrane protein 0,222868 0,144958 A0A087DLY4 Ribosome-binding factor A 0,0737418 -0,033109 A0A087DLA1 Lipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit MurT 0,754933 0,41924 A0A087DC51 UDP-N-acetylmuramoyl-tripeptideD-alanyl-D-alanine ligase 0,678113 0,440465 A0A087DKX1 Protein-disulfide isomerase 0,734139 0,600154 A0A087DLX2 Translation initiation factor IF-1 0,585318 0,122798 A0A087DMG8 Guanylate kinase 0,694194 0,4857 A0A087DMK8 Putative amino acid ABC transporter 0,00156385 -0,00119845 A0A087DLE4 HPr family phosphocarrier 0,074026 -0,389222 A0A087DR10 Protein GrpE 1,18563 -0,704693 A0A087DMK9 Glutamate ABC transporter ATP-binding protein 0,37491 -0,121325 A0A087DNX5 L-asparagineamidohydrolase 0,559261 1,25795 A0A087DNX0 Glutamate racemase 0,186682	A0A087DLF7	IcIR-type transcriptional regulator	0,890562	0,300988
A0A087DKC4 Transcriptional regulator 0,776313 0,316575 A0A087DP27 Transmembrane protein 0,222868 0,144958 A0A087DLY4 Ribosome-binding factor A 0,0737418 -0,033109 A0A087DLA1 Lipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit MurT 0,754933 0,41924 A0A087DC51 UDP-N-acetylmuramoyl-tripeptideD-alanyl-D-alanine ligase 0,678113 0,440465 A0A087DKX1 Protein-disulfide isomerase 0,734139 0,600154 A0A087DLX2 Translation initiation factor IF-1 0,585318 0,122798 A0A087DMG8 Guanylate kinase 0,694194 0,4857 A0A087DMK8 Putative amino acid ABC transporter 0,00156385 -0,00119845 A0A087DLE4 HPr family phosphocarrier 0,074026 -0,389222 A0A087DR10 Protein GrpE 1,18563 -0,704693 A0A087DMK9 Glutamate ABC transporter ATP-binding protein 0,37491 -0,121325 A0A087DNX5 L-asparagineamidohydrolase 0,559261 1,25795 A0A087DNX0 Glutamate racemase 0,186682	A0A087DQ83	Chromosome partitioning protein ParA	0,068231	-0,0370687
A0A087DP27 Transmembrane protein 0,222868 0,144958 A0A087DLY4 Ribosome-binding factor A 0,0737418 -0,033109 A0A087DLA1 Lipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit MurT 0,754933 0,41924 A0A087DQ51 UDP-N-acetylmuramoyl-tripeptideD-alanyl-D-alanine ligase 0,678113 0,440465 A0A087DXX1 Protein-disulfide isomerase 0,734139 0,600154 A0A087DX2 Translation initiation factor IF-1 0,585318 0,122798 A0A087DMG8 Guanylate kinase 0,694194 0,4857 A0A087DMK8 Putative amino acid ABC transporter 0,00156385 -0,00119845 A0A087DLE4 HPr family phosphocarrier 0,074026 -0,389222 A0A087DNS0 Glutamate ABC transporter ATP-binding protein 0,37491 -0,121325 A0A087DNX5 L-asparagineamidohydrolase 0,559261 1,25795 A0A087DNX0 Glutamate racemase 0,186682 -0,0539106	A0A087DKC4		0,776313	
A0A087DLY4 Ribosome-binding factor A 0,0737418 -0,033109 A0A087DLA1 Lipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit MurT 0,754933 0,41924 A0A087DQ51 UDP-N-acetylmuramoyl-tripeptideD-alanyl-D-alanine ligase 0,678113 0,440465 A0A087DKX1 Protein-disulfide isomerase 0,734139 0,600154 A0A087DLX2 Translation initiation factor IF-1 0,585318 0,122798 A0A087DMG8 Guanylate kinase 0,694194 0,4857 A0A087DMK8 Putative amino acid ABC transporter 0,00156385 -0,00119845 A0A087DLE4 HPr family phosphocarrier 0,074026 -0,389222 A0A087DR10 Protein GrpE 1,18563 -0,704693 A0A087DMK9 Glutamate ABC transporter ATP-binding protein 0,37491 -0,121325 A0A087DQD9 Bifunctional short chain isoprenyl diphosphate synthase 0,112062 0,0948544 A0A087DNX5 L-asparagineamidohydrolase 0,559261 1,25795 A0A087DNXO Glutamate racemase 0,186682 -0,0539106	A0A087DP27	Transmembrane protein	0,222868	
A0A087DLA1 Lipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit MurT 0,754933 0,41924 A0A087DQ51 UDP-N-acetylmuramoyl-tripeptideD-alanyl-D-alanine ligase 0,678113 0,440465 A0A087DKX1 Protein-disulfide isomerase 0,734139 0,600154 A0A087DLX2 Translation initiation factor IF-1 0,585318 0,122798 A0A087DMG8 Guanylate kinase 0,694194 0,4857 A0A087DMK8 Putative amino acid ABC transporter 0,00156385 -0,00119845 A0A087DLE4 HPr family phosphocarrier 0,074026 -0,389222 A0A087DR10 Protein GrpE 1,18563 -0,704693 A0A087DMK9 Glutamate ABC transporter ATP-binding protein 0,37491 -0,121325 A0A087DQD9 Bifunctional short chain isoprenyl diphosphate synthase 0,112062 0,0948544 A0A087DNX5 L-asparagineamidohydrolase 0,559261 1,25795 A0A087DNX0 Glutamate racemase 0,0539106	A0A087DLY4	Ribosome-binding factor A	0,0737418	-0,033109
A0A087DQ51 UDP-N-acetylmuramoyl-tripeptideD-alanyl-D-alanine ligase 0,678113 0,440465 A0A087DKX1 Protein-disulfide isomerase 0,734139 0,600154 A0A087DLX2 Translation initiation factor IF-1 0,585318 0,122798 A0A087DMG8 Guanylate kinase 0,694194 0,4857 A0A087DMK8 Putative amino acid ABC transporter 0,00156385 -0,00119845 A0A087DLE4 HPr family phosphocarrier 0,074026 -0,389222 A0A087DR10 Protein GrpE 1,18563 -0,704693 A0A087DMK9 Glutamate ABC transporter ATP-binding protein 0,37491 -0,121325 A0A087DQD9 Bifunctional short chain isoprenyl diphosphate synthase 0,112062 0,0948544 A0A087DNX5 L-asparagineamidohydrolase 0,559261 1,25795 A0A087DNX0 Glutamate racemase 0,186682 -0,0539106	A0A087DLA1		0,754933	0,41924
A0A087DKX1 Protein-disulfide isomerase 0,734139 0,600154 A0A087DLX2 Translation initiation factor IF-1 0,585318 0,122798 A0A087DMG8 Guanylate kinase 0,694194 0,4857 A0A087DMK8 Putative amino acid ABC transporter 0,00156385 -0,00119845 A0A087DLE4 HPr family phosphocarrier 0,074026 -0,389222 A0A087DR10 Protein GrpE 1,18563 -0,704693 A0A087DMK9 Glutamate ABC transporter ATP-binding protein 0,37491 -0,121325 A0A087DQD9 Bifunctional short chain isoprenyl diphosphate synthase 0,112062 0,0948544 A0A087DNX5 L-asparagineamidohydrolase 0,559261 1,25795 A0A087DNX0 Glutamate racemase 0,186682 -0,0539106	A0A087DQ51			
A0A087DLX2 Translation initiation factor IF-1 0,585318 0,122798 A0A087DMG8 Guanylate kinase 0,694194 0,4857 A0A087DMK8 Putative amino acid ABC transporter 0,00156385 -0,00119845 A0A087DLE4 HPr family phosphocarrier 0,074026 -0,389222 A0A087DR10 Protein GrpE 1,18563 -0,704693 A0A087DMK9 Glutamate ABC transporter ATP-binding protein 0,37491 -0,121325 A0A087DQD9 Bifunctional short chain isoprenyl diphosphate synthase 0,112062 0,0948544 A0A087DNX5 L-asparagineamidohydrolase 0,559261 1,25795 A0A087DNX0 Glutamate racemase 0,186682 -0,0539106		Protein-disulfide isomerase	·	·
A0A087DMG8 Guanylate kinase 0,694194 0,4857 A0A087DMK8 Putative amino acid ABC transporter 0,00156385 -0,00119845 A0A087DLE4 HPr family phosphocarrier 0,074026 -0,389222 A0A087DR10 Protein GrpE 1,18563 -0,704693 A0A087DMK9 Glutamate ABC transporter ATP-binding protein 0,37491 -0,121325 A0A087DQD9 Bifunctional short chain isoprenyl diphosphate synthase 0,112062 0,0948544 A0A087DNX5 L-asparagineamidohydrolase 0,559261 1,25795 A0A087DNX0 Glutamate racemase 0,186682 -0,0539106				·
A0A087DMK8 Putative amino acid ABC transporter 0,00156385 -0,00119845 A0A087DLE4 HPr family phosphocarrier 0,074026 -0,389222 A0A087DR10 Protein GrpE 1,18563 -0,704693 A0A087DMK9 Glutamate ABC transporter ATP-binding protein 0,37491 -0,121325 A0A087DQD9 Bifunctional short chain isoprenyl diphosphate synthase 0,112062 0,0948544 A0A087DNX5 L-asparagineamidohydrolase 0,559261 1,25795 A0A087DNX0 Glutamate racemase 0,186682 -0,0539106			·	
A0A087DLE4 HPr family phosphocarrier 0,074026 -0,389222 A0A087DR10 Protein GrpE 1,18563 -0,704693 A0A087DMK9 Glutamate ABC transporter ATP-binding protein 0,37491 -0,121325 A0A087DQD9 Bifunctional short chain isoprenyl diphosphate synthase 0,112062 0,0948544 A0A087DNX5 L-asparagineamidohydrolase 0,559261 1,25795 A0A087DNX0 Glutamate racemase 0,186682 -0,0539106		<u> </u>	·	'
A0A087DR10 Protein GrpE 1,18563 -0,704693 A0A087DMK9 Glutamate ABC transporter ATP-binding protein 0,37491 -0,121325 A0A087DQD9 Bifunctional short chain isoprenyl diphosphate synthase 0,112062 0,0948544 A0A087DNX5 L-asparagineamidohydrolase 0,559261 1,25795 A0A087DNX0 Glutamate racemase 0,186682 -0,0539106		·		·
A0A087DMK9 Glutamate ABC transporter ATP-binding protein 0,37491 -0,121325 A0A087DQD9 Bifunctional short chain isoprenyl diphosphate synthase 0,112062 0,0948544 A0A087DNX5 L-asparagineamidohydrolase 0,559261 1,25795 A0A087DNX0 Glutamate racemase 0,186682 -0,0539106				
A0A087DQD9 Bifunctional short chain isoprenyl diphosphate synthase 0,112062 0,0948544 A0A087DNX5 L-asparagineamidohydrolase 0,559261 1,25795 A0A087DNX0 Glutamate racemase 0,186682 -0,0539106		·		•
A0A087DNX5 L-asparagineamidohydrolase 0,559261 1,25795 A0A087DNX0 Glutamate racemase 0,186682 -0,0539106				
A0A087DNX0 Glutamate racemase 0,186682 -0,0539106				·
		· · · · · ·		
1001001 D G 20 E000E00VIIDUIIUEEUJE 1141 117	A0A087DQ98	Exodeoxyribonuclease	0,54036	0,415377

A0A087DMH1	S-adenosylmethionine synthase	0,912574	0,374547
A0A087DMN7	Proline iminopeptidase	0,147665	0,11895
A0A087DLA3	Poly(Hydroxyalcanoate) granule associated protein (Phasin)	0,682729	0,870259
A0A087DNH7	Peptide deformylase	1,46306	0,610987
A0A087DSC8	Chaperone protein DnaJ	0,0528612	0,0460752
A0A087DKY2	Chromosome partitioning protein	0,827297	0,297194
A0A087DLK8	Ribonuclease PH	0,522863	0,629292
A0A087DLI7	RNA-binding protein KhpA	1,66635	0,814401
A0A087DRI7	ABC transporter ATP-binding protein	0,655144	0,522531
A0A087DM37	GTP cyclohydrolase 1	0,111256	-0,109338
A0A087DNL8	Dihydroorotate oxidase	0,0459181	0,0239563
A0A087DQC8	Protein RecA	1,2536	0,461857
A0A087DP22	Oxidoreductase	0,262797	0,23344
A0A087DMC9	Glutamate/aspartate ABC transporter ATP-binding protein	0,0385218	0,055535
A0A087DLE6	Raf-like protein	0,442261	0,593742
A0A087DSI3	Isocitrate dehydrogenase [NADP]	0,335289	0,268942
A0A087DRT6	Haloacid dehalogenase (HAD) superfamily hydrolase	0,37164	0,276748
A0A087DSL2	Elongation factor 4	0,290841	-0,168402
A0A087DSQ5	Chorismate synthase	1,44217	0,309149
A0A087DS97	tRNA N6-adenosine threonylcarbamoyltransferase	0,657602	0,260002
A0A087DRL4	N-acetyl-gamma-glutamyl-phosphate reductase	0,104381	0,0744311
A0A087DMH4	Methionyl-tRNA formyltransferase	0,0399851	-0,014864
A0A087DQC7	DNA binding protein	0,0460564	0,0394408
A0A087DNW5	Aminoglycoside phosphotransferase	0,937188	0,496513
A0A087DMK0	Cold shock protein	0,827371	-0,469252
A0A087DQ22	Imidazole glycerol phosphate synthase subunit HisH	1,11373	0,525705
A0A087DSJ8	Aspartate carbamoyltransferase regulatory subunit	1,91974	0,855728
A0A087DT13	Maltose/maltodextrin transport system permease protein	0,0702483	-0,0349522
A0A087DSS2	phosphate acetyltransferase	0,0901098	-0,0705674
A0A087DSR1	Secreted protein	0,326554	-0,380986
A0A087DQF1	YqeY-like protein	0,0361432	-0,037508
A0A087DSH2	Imidazole glycerol phosphate synthase subunit HisF	0,14196	0,0815862
A0A087DM77	Sua5/Yci	0,185985	0,248369
A0A087DKY0	Integral membrane protein MviN	0,565986	0,308132
A0A087DKM4	Hydrogenase	0,196308	-0,14033
A0A087DP09	Putative CoA-substrate-specific enzyme activase	0,576685	0,434711
A0A087DQ64	ABC transporter ATP-binding protein	0,742552	-0,385934
A0A087DM97	SsrA-binding protein	0,101099	0,10417
A0A087DNW0	Pyridoxine biosynthesis enzyme	0,824395	0,262039
A0A087DQY6	Phosphohydrolase	0,430879	0,159512
A0A087DKX5	LytR/CpsA/Psr regulator C-terminal domain-containing protein	0,802326	-0,295302

A0A087DLS6	UDP-N-acetylenolpyruvoylglucosamine reductase	0,973398	0,632817
A0A087DT84	Beta-galactosidase	0,41232	-0,216087
A0A087DM76	Branched-chain amino acids ABC transporter, ATP-binding protein	0,157951	-0,122433
A0A087DM09	histidine kinase	0,444947	0,346612
	UDP-N-acetylmuramoylalanyl-D-glutamate2,6-diam inopimelate		
A0A087DQ70	ligase	0,601385	0,675821
A0A087DRL5	Arginine biosynthesis bifunctional protein ArgJ	0,627717	0,562177
A0A087DRL8	Ornithine carbamoyltransferase	0,289255	0,299746
A0A087DQE1	RNA polymerase sigma factor SigA	0,353064	0,264575
A0A087DNZ0	ABC transporter	0,418653	-0,753073
A0A087DHL6	Putative lipoprotein	1,09355	0,362779
A0A087DHM7	L-ribulose-5-phosphate 4-epimerase	0,0908629	0,0507577
A0A087DQ67	Folylpolyglutamate synthase	0,823277	0,719726
A0A087DS86	ABC transporter permease	0,254027	-0,243231
A0A087DQC2	tRNA-2-methylthio-N(6)-dimethylallyladenosine synthase	1,07207	0,49736
A0A087DLY6	Riboflavin kinase	0,572522	0,364396
A0A087DKY3	Chromosome partitioning protein ParA	0,846751	0,174524
A0A087DQ68	Aspartate racemase	0,304798	-0,285514
A0A087DRT8	K transporter, NAD-binding component	0,34509	-0,219606
A0A087DHI4	Orotate phosphoribosyltransferase PyrE	0,0456369	-0,0207462
A0A087DQ19	Histidinol-phosphate aminotransferase	1,06898	0,148254
A0A087DQG0	Pyruvate formate-lyase-activating enzyme	0,509722	-0,430932
A0A087DSK5	tRNA (adenine(58)-N(1))-methyltransferase Trml	0,5177	-0,31685
A0A087DME7	Phosphoglycerol transferase family protein	0,0647033	-0,053594
A0A087DKB9	Bifunctional protein FolD	0,323829	0,1787
A0A087DME4	N5-carboxyaminoimidazole ribonucleotide mutase	0,212621	0,205193
A0A087DSC4	Bifunctional HTH-domain containing protein/aminotransferase	0,698568	0,381792
A0A087DMF7	Low specificity-threonine aldolase	0,428582	-0,344191
A0A087DSA3	ABC transporter ATP-binding protein	0,950694	0,487145
A0A087DL93	Glycosyltransferase	0,233008	0,177373
A0A087DNN1	ADP-ribose pyrophosphatase	0,803799	1,41793
A0A087DL20	FHA domain containing protein	0,0296968	-0,0178095
A0A087DKB1	NIF3-related protein	0,0346755	0,0564664
A0A087DT25	NADPH-flavin oxidoreductase	0,563517	-0,353246
A0A087DRT5	Helicase	0,0340979	0,0332508
A0A087DMI2	MarR-type transcriptional regulator	0,609225	-0,345388
A0A087DM90	Citrate synthase	0,00893552	0,00396347
A0A087DL76	ABC transporter permease	0,324103	0,213186
A0A087DQC1	GTP-pyrophosphokinase	0,250866	0,309676
A0A087DM75	Branched-chain amino acids ABC transporter, ATP-binding protein	0,270746	-0,151033
A0A087DKX6	RNA nucleotidyltransferase	0,970758	0,408969
A0A087DKX0 A0A087DM15	OsmC-like protein	0,970738	0,0740242
VOVOQ1DIAIT2	OSHIC-IIKE PIOLEIII	0,072400	0,0740242

A0A087DQ12	Cell division protein SepF	0,817616	-0,433347
A0A087DSQ3	3-dehydroquinate dehydratase	0,0486813	0,106079
A0A087DSA0	Putative carboxymuconolactone decarboxylase	0,437833	0,84627
A0A087DKY6	Membrane protein insertase YidC	0,174155	-0,0706164
A0A087DM83	Putative sugar-phosphatase	0,1845	0,0434634
A0A087DMM3	succinate dehydrogenase	0,881189	0,489344
A0A087DQF0	Peptidyl-prolyl cis-trans isomerase	0,480151	0,241093
A0A087DS95	Glycoprotease protein family	0,361562	-0,105752
A0A087DMH6	AAA ATPase forming ring-shaped complexes	0,770221	0,331899
A0A087DLJ3	ABC transporter ATP-binding protein	0,343776	-1,114
A0A087DHJ3	AsnC-type transcriptional regulator	0,219366	0,172194
A0A087DSN7	CBS domain containing protein	0,667817	0,214327
A0A087DNW9	Diaminopimelate epimerase	0,784485	0,49109
A0A087DP12	Exodeoxyribonuclease 7 large subunit	0,344113	-0,280231
A0A087DQ20	Imidazoleglycerol-phosphate dehydratase	0,390893	0,306901
A0A087DRJ1	DNA ligase	0,0205416	-0,0362244
A0A087DSK2	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase	0,729951	0,963983
A0A087DSK8	Tripartite tricarboxylate transporter TctB family protein	0,0497628	-0,0822004
A0A087DSH0	Anthranilate synthase component 1	1,44022	0,644652
A0A087DM20	tRNA (guanine-N(7)-)-methyltransferase	0,298886	0,180754
A0A087DNW3	Hydrolase	0,718324	0,679218
A0A087DRH8	Aminopeptidase	1,00354	0,550135
A0A087DMF5	Formate-dependent phosphoribosylglycinamide formyltransferase	0,764058	-0,374001
A0A087DMG7	Orotidine 5'-phosphate decarboxylase	0,654461	0,68295
A0A087DHN4	beta-galactosidase	0,308607	-0,136899
A0A087DHM6	Sugar kinase	0,246518	-0,220909
A0A087DKX2	G5 domain protein	0,823601	-0,625616
A0A087DSH3	Probable dual-specificity RNA methyltransferase RlmN	0,425822	0,566124
A0A087DL02	Threonine/serine exporter	1,83868	0,520623
A0A087DHI6	Aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit C	0,747962	-0,35638
A0A087DHM1	Diaminopimelate decarboxylase	0,475537	0,234948
A0A087DSE2	UTP-glucose-1-phosphate uridylyltransferase	0,465814	0,329507
A0A087DKY4	Ribosomal RNA small subunit methyltransferase G	0,208984	-0,172321
A0A087DLZ8	Response regulator of two-component system	1,04009	1,15715
A0A087DNL7	DeoR-type transcriptional regulator	0,663898	0,230167
A0A087DLA4	ABC transporter	0,0423886	0,024526
A0A087DMM1	Methyltransferase	0,1473	-0,106012
A0A087DLI9	Endonuclease/exonuclease/phosphatase	0,0520097	0,0849953
A0A087DLA2	Lipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit GatD	0,109535	-0,128721
A0A087DME0	S-layer domain protein	0,674681	0,336431
A0A087DL00	Carbonic anhydrase	1,05892	0,651

A0A087DNU9	LacI-type transcriptional regulator	0,137217	-0,0904922
A0A087DNK5	Putative tRNA (cytidine(34)-2'-	0,822624	0,491709
A0A087DNL9	NADH-dependent flavin oxidoreductase YqjM	0,0923174	0,0921033
A0A087DKD5	Cell envelope-related transcriptional attenuator	0,765517	1,09818
A0A087DHN1	Pyridoxal 5'-phosphate synthase subunit PdxS	0,136075	0,152094
A0A087DT16	4-alpha-glucanotransferase	0,48612	-0,874308
A0A087DKX3	Ribosomal RNA small subunit methyltransferase A	0,395602	0,234948
A0A087DT12	Sugar ABC transporter, permease protein	0,987295	-1,00245
A0A087DMA2	ABC transporter ATP-binding protein	0,169876	-0,123679
A0A087DMJ4	LytR/CpsA/Psr regulator C-terminal domain-containing protein	0,339947	0,238409
A0A087DLZ6	Diacylglycerol kinase catalytic domain protein	1,32822	0,30809
A0A087DHH5	Transposase	0,347179	0,568022
A0A087DNK7	UPF0237 protein BSTER_1327	0,1661	0,274787
A0A087DRI2	Putative RNA-binding protein YqeI	0,280461	-0,123065
A0A087DL57	Ketol-acid reductoisomerase (NADP(+))	1,60551	1,30125
A0A087DHJ0	Protein often found in actinomycetes clustered with signal peptidase and/or RNaseHII	0,313038	0,412311
A0A087DKP0	Purine or uracil permease	0,55278	-0,627228
A0A087DLY7	DNA repair protein RadA	0,0359323	0,0324542
A0A087DL53	Sucrose phosphorylase	1,221	-1,01981
A0A087DHI3	Putative DNA recombination protein RmuC	0,196215	0,131268
A0A087DNV5	Isoprenyl transferase	0,635019	0,443391
A0A087DT98	Alpha-xylosidase	0,166589	-0,179099
A0A087DM88	M13 family peptidase	0,0401555	0,0381953
A0A087DNV8	4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase (flavodoxin)	0,465786	0,73947
A0A087DSB5	UvrABC system protein A	0,00535425	0,00310453
A0A087DR04	DedA integral membrane protein	2,405	0,715802
A0A087DL89	Putative phage infection protein	0,894486	0,425138
A0A087DMB5	Cystathionine gamma-synthase	0,0704218	0,225975
A0A087DT19	ABC transporter permease	0,32675	-0,869308
A0A087DNH6	Amino acid antiporter	0,102439	0,348846
A0A087DLK9	dITP/XTP pyrophosphatase	0,560333	0,357595
A0A087DRL9	Arginine repressor	0,705263	0,398923
A0A087DKB2	DNA polymerase I	0,310546	-0,296818
A0A087DLU3	Glycogen debranching enzyme GlgX	0,42828	0,308848
A0A087DM94	Cell division ATP-binding protein FtsE	0,88329	0,775871
A0A087DQ47	Ribosomal RNA small subunit methyltransferase H	0,597808	0,3744
A0A087DKB5	TerC family integral membrane protein	0,270006	0,261473
A0A087DLQ8	Phosphate-binding protein	0,262968	-0,455343
A0A087DHI0	2-hydroxyhepta-2,4-diene-1,7-dioate isomerase	0,319526	-0,490406
A0A087DHM3	Homoserine kinase	0,538362	-0,356829
A0A087DQE5	DNA topoisomerase (ATP-hydrolyzing)	0,969918	0,357843

A0A087DQ75	Cys-tRNA(Pro)/Cys-tRNA(Cys) deacylase	0,0949745	0,174224
A0A087DHL2	FOF1 ATP synthase subunit epsilon	0,0349238	-0,033268
A0A087DSG8	Tryptophan synthase alpha chain	0,798965	0,554252
A0A087DQE7	DNA binding protein	0,133972	0,0619125
A0A087DMG4	Transcription antitermination protein NusB	0,0700744	0,15487
A0A087DL16	non-specific serine/threonine protein kinase	0,76363	0,428224
A0A087DT82	dCTP deaminase, dUMP-forming	0,296363	0,112544
A0A087DSR0	Secreted protein	0,625661	-1,56928
A0A087DM59	XyIR-type repressor	0,0138103	0,0265783
A0A087DLE2	Thymidylate kinase	0,167588	0,236848
A0A087DLA0	Replicative DNA helicase	1,28813	0,585289
A0A087DME2	1-deoxy-D-xylulose-5-phosphate synthase	0,235384	0,280683
A0A087DLR6	Forkhead-associated protein	0,00263654	0,00164986
A0A087DM48	Xylose isomerase	0,727333	1,31491
A0A087DSP1	Ribosomal RNA small subunit methyltransferase E	0,871854	0,377904
A0A087DL22	Dipeptidyl peptidase IV	0,494923	0,19241
A0A087DMJ1	DUF58 domain-containing protein	0,154523	0,139037
A0A087DHJ7	ABC transporter substrate-binding protein	0,112918	0,110335
A0A087DM96	CHAP domain containing protein	0,399385	-0,782869
A0A087DLQ3	Phospho-2-dehydro-3-deoxyheptonate aldolase	0,390946	0,19922
A0A087DSD0	Undecaprenyl-diphosphatase	0,0382063	0,0366586
A0A087DM70	Peptide chain release factor 1	0,740767	0,260391
A0A087DSG9	Multifunctional fusion protein	0,879213	0,698739
A0A087DKM3	NAD(P)H oxidoreductase	0,595602	0,152151
A0A087DLS0	Putative evolved beta-galactosidase subunit alpha	0,148019	-0,482551
A0A087DP03	Beta-D-xylosidase	0	2,618
A0A087DKM5	Two-component system sensor histidine kinase	0,787089	0,134159
A0A087DK93	Alpha-amylase (Fragment)	0,645704	-1,70188
A0A087DLG3	Acyltransferase	0,228148	0,18632
A0A087DL97	Ammonium transporter	0,711753	-0,651965
A0A087DKZ5	Putative integral membrane protein	0,136628	-0,0578403
A0A087DRJ2	Iron-sulfur cluster carrier protein	0,51415	0,424893
A0A087DMI0	Pupprotein ligase	1,01558	0,637769
A0A087DQZ0	Alpha-arabinofuranosidase I	0,672206	0,60481
A0A087DLC2	Aspartokinase	1,28287	0,481763
A0A087DP02	ATP-dependent carboxylate-amine ligase	0,508182	0,274899
A0A087DSC1	Triosephosphate isomerase	0,109534	0,0591068
A0A087DL26	Lysophospholipase PldB	0,319676	-0,469393
A0A087DQ45	ATP-dependent DNA helicase	0,1105	-0,100309
A0A087DLK5	Phosphopantetheine adenylyltransferase	0,0849331	0,0705897
A0A087DLQ5	adenosylhomocysteine nucleosidase	1,58607	0,570701

A0A087DLZ9	Histidine kinase sensor of two component system	0,572943	0,35219
A0A087DLH1	Small-conductance mechanosensitive channel	0,11764	0,191853
A0A087DML2	Glutamate ABC transporter permease	1,11038	-0,845465
A0A087DQF4	Lipoprotein	0,952326	0,932507
	UDP-N-acetylmuramoylalanyl-D-glutamate2, 6-diaminopimelate		
A0A087DQ50	ligase	0,611615	0,398038
A0A087DLM3	Glutamate 5-kinase	0,127363	-0,17406
A0A087DSD8	RNA polymerase-binding protein RbpA	0,0889922	0,145932
A0A087DKN6	ABC transporter ATP-binding protein	0,191114	0,435861
A0A087DQ63	Peptide ABC transporter permease	0,150778	-0,153203
A0A087DMN0	Cobalt ABC transporter ATPase	0,375169	-0,732938
A0A087DSL7	Alpha/beta hydrolase	0,114835	0,159328
A0A087DLI3	ATP-dependent DNA helicase	0,246188	0,340117
A0A087DRJ0	Tetratricopeptide repeat protein	0,102794	0,221375
A0A087DL55	Transmembrane transport protein	0,210233	-0,359968
A0A087DLI6	Ribosome maturation factor RimM	0,745422	0,53458
A0A087DKZ9	Hemolysin-like protein	0,0163536	0,0121829
A0A087DMD9	ABC transporter ATP-binding protein	1,25938	0,577981
A0A087DR06	Haloacid dehalogenase	0,0884884	0,160488
A0A087DM58	Xylulose kinase	0,083387	0,201429
A0A087DQ90	Uncharacterized protein	0,130201	-0,236259
A0A087DLP9	2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase	1,26745	1,09727
A0A087DQZ7	Lipase	0,141875	0,15638
A0A087DLK1	Ribonuclease 3	0,873947	0,523943
A0A087DNM1	Transcriptional regulator	0,413152	-0,415101
A0A087DS85	Phosphoglycerate mutase family protein	1,23276	0,861512
A0A087DLS9	N-succinyldiaminopimelate aminotransferase	0,469622	0,556355
A0A087DQ62	Peptide ABC transporter permease	0,68773	0,496905
A0A087DNX1	Patatin family phospholipase	0,60228	1,0784
A0A087DRL6	Acetylglutamate kinase	1,14611	0,287291
A0A087DM95	Cell division protein FtsX	0,146147	0,159791
A0A087DP18	Tmp1	0,246206	0,268965
A0A087DLC7	Phosphohydrolase	0,307261	-0,529517
A0A087DMM7	pyridoxal kinase	0,492204	-0,536527
A0A087DM16	Thymidylate synthase	0,885746	1,54362
A0A087DMM2	succinate dehydrogenase	1,16149	0,342478
A0A087DLC0	DNA polymerase III subunits gamma and tau	0,641715	0,490332
A0A087DKN1	Oxppcycle protein OpcA	0,256221	-0,639968
A0A087DNY7	Galactoside symporter	0,176217	0,43538
A0A087DQ71	RNA polymerase sigma factor RpoE	0,307079	0,989795
A0A087DMA9	Peptides ABC transporter substrate-binding protein	1,57338	-1,82565
A0A087DKC7	histidine kinase	1,10389	1,3727

A0A087DLB9	TetR-type transcriptional regulator	0,796332	1,09752
A0A087DSA2	Cation transporter	0,390717	0,377439
A0A087DLB8	Diacylglycerol kinase, catalytic region protein	0,464642	-0,471515
A0A087DL98	Nitrogen regulatory protein N-II	0,0984636	-0,269527
A0A087DL30	Queuine tRNA-ribosyltransferase	0,371712	0,223412
A0A087DQ37	Methyltransferase small domain protein	0,783194	-0,830723
A0A087DLA9	MutT1 protein	0,388141	-0,602119
A0A087DSG7	Phosphatidylglycerolprolipoprotein diacylglyceryl transferase	0,742389	-0,466085
A0A087DRH3	Alpha/beta hydrolase	0,374705	0,34152
A0A087DLL3	Signal peptidase I	0,0386667	-0,0705452
A0A087DLM9	Regulator	0,625151	0,595504
A0A087DHL5	GTPase regulator-like protein	0,293994	0,491664
A0A087DSP2	tRNA/rRNA methyltransferase	1,29728	0,670558
A0A087DSR2	Phosphoglycerate mutase	0,456994	1,05524
A0A087DL19	Phosphoprotein phosphatase	1,16084	1,56667
A0A087DQC4	DNA translocase ftsK	0,0585324	-0,045276
A0A087DLN1	Biotin-(Acetyl-CoA carboxylase) ligase	1,08899	0,742871
A0A087DHJ9	Transcriptional regulator	1,14025	0,411149
A0A087DNZ1	ABC transporter ATP-binding protein	0,565284	-0,870889
A0A087DQ36	ATP-dependent helicase	0,574252	0,590743
A0A087DL77	ABC transporter permease	0,590618	0,534767
A0A087DMJ9	histidine kinase	0,502263	-0,210423
A0A087DQC5	DP-diacylglycerolglycerol-3-phosphate 3-phosphatidyltransferase	0,779103	-0,933187
A0A087DM32	Permease	0,434955	-0,831106
A0A087DKX8	Secreted protein	0,363558	0,272461
A0A087DML5	Recombination factor protein RarA	0,645533	0,739194
A0A087DL17	Penicillin binding protein transpeptidase	0,966347	0,45217
A0A087DKY9	Chromosomal replication initiator protein DnaA	0,634834	0,39204
A0A087DLN7	Holo-[acyl-carrier-protein] synthase	0,355732	-0,255051
A0A087DMC8	Amino acids ABC transporter permease	0,358415	-0,472507
A0A087DR13	ABC transporter, substrate-binding protein	0,302793	0,746415
A0A087DSJ1	Alpha beta hydrolase	0,203534	0,203047
A0A087DKN8	ATP-dependent RNA helicase	1,05889	0,972989
A0A087DKN2	6-phosphogluconolactonase	0,130169	0,107379
A0A087DLK3	Metal-binding/nucleic acid-binding protein	1,28567	0,640568
A0A087DLY5	tRNA pseudouridine synthase B	0,635769	0,542868
A0A087DLQ4	Phospho-2-dehydro-3-deoxyheptonate aldolase	1,13834	0,833995
A0A087DMH3	Alpha beta hydrolase	0,730452	0,527835
A0A087DSI8	ABC transporter	0,17048	0,147573
A0A087DSC9	Fructosamine kinase	0,181382	0,40278
A0A087DSD7	Hydrolase or phosphatase	0,385965	0,434301

A0A087DT18	Beta-carotene 15,15-monooxygenase	0,140561	0,0573095
A0A087DLP7	Protease	1,21389	1,0733
A0A087DMJ0	DUF4129 domain-containing protein	0,478872	0,459266
A0A087DQ17	DNA polymerase III subunit alpha	0,559716	0,778809
A0A087DSP4	Putative metal-sulfur cluster biosynthetic enzyme	0,459294	0,474173
A0A087DRU0	NAD kinase	0,660551	-0,525956
A0A087DKX4	4-diphosphocytidyl-2-C-methyl-D-erythritol kinase	0,0564651	0,0919539
A0A087DNI9	GNAT family acetyltransferase	0,721885	-0,680199
A0A087DNJ4	Methanol dehydrogenase regulatory protein	0,794287	-0,406791
A0A087DQB9	Membrane protein	1,25299	0,976007
A0A087DNN0	Alpha beta hydrolase	0,322167	1,18348
A0A087DLZ2	Two-component response regulator	0,828952	1,46961
A0A087DHP4	Alpha-amylase (Fragment)	0,444102	-1,56875
A0A087DMR9	site-specific DNA-methyltransferase (adenine-specific)	0,0812924	0,0819842
A0A087DKM6	Flavodoxin	0,0121713	0,00991058
A0A087DKN5	Peptidase, S9A/B/C family, catalytic domain protein	0,662696	1,2144
A0A087DRU9	Probable nicotinate-nucleotide adenylyltransferase	1,10877	0,409407
A0A087DQF6	N-acyl-L-amino acid amidohydrolase	1,01119	2,84544
A0A087DQE2	DNA topoisomerase (ATP-hydrolyzing)	0,525723	0,834971
A0A087DL59	Aromatic amino acid transport protein AroP	2,5032	-0,468762
A0A087DM64	Putative secreted protein	0,355	-0,690897
A0A087DMB6	DNA helicase	0,390471	1,06046
A0A087DML3	PPK2 family polyphosphate:nucleotide phosphotransferase	0,207291	0,253651
A0A087DQZ5	ABC transporter ATP-binding protein/permease	0,147618	0,220688
A0A087DQF3	D-methionine ABC transporter	0,414849	-0,417227
A0A087DME1	Putative ABC transporter	0,376044	0,973693
A0A087DNY8	LacI-type transcriptional regulator	0,628645	-0,585035
A0A087DLR2	ABC transporter substrate-binding protein	0,623484	-0,864667
A0A087DKD2	Brp/Blh family beta-carotene 15,15'-monooxygenase	0,586505	0,59671
A0A087DKA6	3-phosphoshikimate 1-carboxyvinyltransferase	0,611575	0,401634
A0A087DLY8	Secreted protein	0,260629	0,718742
A0A087DNM7	Glycine cleavage system H protein	0,510668	-0,882355
A0A087DSA7	Membrane protein	0,151371	0,24813
A0A087DMH5	phosphoserine phosphatase	0,133716	-0,0706482
A0A087DQD8	non-specific serine/threonine protein kinase	0,0236173	0,0141824
A0A087DM57	Acetyltransferase	0,541233	-0,452531
A0A087DSN9	PhoH-like protein	1,38431	1,20009
A0A087DHN2	Pyridoxal 5'-phosphate synthase subunit PdxT	0,180132	0,579954
A0A087DL40	Fructose-bisphosphate aldolase	0,154614	-0,188948
A0A087DML4	DEAD/DEAH box helicase	0,839042	0,460143
A0A087DKL6	Transcription-repair-coupling factor	0,315476	0,244532

A0A087DNM0	peptidoglycan glycosyltransferase	0,385801	0,611751
A0A087DQY8	Probable potassium transport system protein Kup	0,717526	-2,61635
A0A087DLC9	Beta-xylosidase	1,04473	-0,297749
A0A087DSI9	ADP-dependent (S)-NAD(P)H-hydrate dehydratase	0,65488	0,755952
A0A087DSI4	Periplasmic binding protein domain-containing protein	0,0228186	-0,0385736
A0A087DSJ7	Dihydroorotase	1,11402	1,43463
A0A087DQD3	Anthranilate phosphoribosyltransferase	1,40884	1,44348
A0A087DNN6	Bacterial sugar transferase	0,691663	0,479105
A0A087DSG0	Division initiation protein	0,736955	1,0071
A0A087DJE0	Cell division protein ftsZ	0,984062	1,75796
A0A087DSH4	CdsA phosphatidate cytidylyltransferase	0,142137	0,189834
A0A087DLZ5	Transcription antiterminator LicT	0,44282	0,770643
A0A087DM39	Bifunctional folate synthesis protein	0,59772	1,40622
A0A087DMN8	Pyrroline-5-carboxylate reductase	0,328865	0,26705
A0A087DNW7	Putative Metal-Dependent Phosphoesterase	0,0383587	0,0797539
A0A087DHD7	1,4-beta-N-acetylmuramidase	0,420422	-1,2189
A0A087DKD7	Transcriptional regulator WhiB	0,170687	0,949612
A0A087DLQ6	histidine kinase	0,330922	-0,423807
A0A087DS87	Phosphoglycerate mutase	0,22712	0,141306
A0A087DLE3	DNA polymerase III subunit delta	0,318626	-0,62262
A0A087DM69	Large ribosomal subunit protein bL31	1,21589	1,43623
A0A087DL94	TetR-type transcriptional regulator	0,00425163	0,0077699
A0A087DSK0	Bifunctional glutamine-synthetase adenylyltransferase/deadenyltransferase	0,0532316	-0,0511602
A0A087DMF6	Glycosyltransferase	0,35835	-1,35924
A0A087DRI6	Aminotransferase	2,0283	1,12463
A0A087DNV7	Hydrolase	0,370574	-0,347958
A0A087DL36	Protease HtpX homolog	0,145512	-0,200898
A0A087DM33	N-acetylglucosaminyltransferase	0,676035	1,31702
A0A087DL90	VPDSG-CTERM exosortase interaction domain protein	0,633294	0,753181
A0A087DQ43	Transcriptional repressor NrdR	1,31085	0,694267
A0A087DS88	Magnesium/cobalt transporter CorA	0,43426	-0,635576
A0A087DSG3	CDP-diacylglycerolglycerol-3-phosphate 3-phosphatidyltransferase	0,771408	0,645422
A0A087DNN5	Chemotaxis protein	0,796364	-0,666897
A0A087DSH1	Phosphoribosyl-AMP cyclohydrolase	1,00474	1,78748
A0A087DLI5	tRNA (guanine-N(1)-)-methyltransferase	0,690883	0,413472
A0A087DS94	tRNA threonylcarbamoyladenosine biosynthesis protein TsaE	0,561922	-1,49346
A0A087DLQ9	Phosphate transport system permease protein	0,633651	-0,995944
A0A087DHN9	Diguanylate cyclase (GGDEF) domain protein	0,408114	-0,840288
A0A087DLZ1	Histidine kinase	1,0411	2,69102
A0A087DHI5	TrmH family RNA methyltransferase	0,19772	0,16169
A0A087DM74	Branched-chain amino acids ABC transporter, permease protein	0,286867	-0,312727

A0A087DNZ3	Putative beta-glucosidase	0,964737	0,529311
A0A087DNM8	ErfK/YbiS/YcfS/YnhG superfamily protein	0,0949501	0,310286
A0A087DLF2	Phosphoglycerate mutase	1,40369	1,48621
A0A087DMC2	DNA primase	0,217862	0,289263
A0A087DQ16	Pseudouridine synthase	0,145565	0,238649
A0A087DLH9	Putative transcription factor	0,063674	0,0671965
A0A087DM17	dihydrofolate reductase	0,00336154	-0,00728162
A0A087DLT7	2-hydroxyacid dehydrogenase	0,679511	0,414958
A0A087DQ41	LexA repressor	0,103207	-0,0599728
A0A087DMN2	Regulatory protein	0,208542	0,152849
A0A087DHJ4	Chorismate mutase	0,895118	0,355819
A0A087DKX7	Phosphohydrolase	0,428219	0,823252
A0A087DML1	Glutamate ABC transporter permease	0,292634	-0,343215
A0A087DHM4	Nucleoside triphosphate pyrophosphatase	0,734716	0,998802
A0A087DNI5	ActP copper transport ATPase	0,221988	0,705391
A0A087DHH2	Glycerol uptake facilitator protein	0,135788	0,22625
A0A087DLP6	GntR family transcriptional regulator	0,083254	-0,106436
A0A087DR03	Ribosomal RNA small subunit methyltransferase I	0,111106	0,116482
A0A087DSQ4	Multifunctional fusion protein	0,49001	0,514936
A0A087DQE6	Nucleotide pyrophosphatase	0,254892	-0,328536
A0A087DKC0	ABC transporter substrate-binding protein	0,944038	0,918201
A0A087DHI2	Copper-transporting ATPase	0,0798374	-0,0430654
A0A087DRV5	ABC transporter ATP-binding protein	0,439637	0,801495
A0A087DQ77	thiamine diphosphokinase	0	-0,00476265
A0A087DR00	Glycosyl hydrolase	0,448794	0,483206
A0A087DM40	DUF3180 domain-containing protein	0,408782	0,491307
A0A087DQG2	Ribonuclease D	0,100107	-0,0709998
A0A087DQ10	NifR3-like protein	0,776607	1,70662
A0A087DLD7	peptidoglycan glycosyltransferase	0,480223	0,963659
A0A087DLQ7	Response regulator of two-component system	1,71498	1,74293
A0A087DSJ2	Transcriptional regulator CpsY	0,436191	0,311145
A0A087DHG2	Ribose operon repressor RbsR	1,66234	1,29835
A0A087DQY7	Glutamine amidotransferase, class-II	0,561235	1,50899
A0A087DLQ0	Pyroglutamyl-peptidase I	0,898728	-0,561232
A0A087DLG1	Putative dihydroorotate oxidase	0,844657	1,27435
A0A087DSD9	Helicase	0	-0,31078
A0A087DLT9	AbrB family transcriptional regulator	0,910366	2,63172
A0A087DSQ1	Alpha-amylase	0,84544	-0,875896
A0A087DL58	Sialic acid-specific 9-	0,274392	1,08692
A0A087DKC1	ABC transporter ATP-binding protein	0,530937	-0,59408
A0A087DHK5	ATP synthase subunit a	0,385885	-1,15122

A0A087DR05	ATPase	0,685622	-1,92779
A0A087DQ15	Lipoprotein signal peptidase	1,17923	0,580739
A0A087DKC9	phosphomannomutase	0,0794859	0,060304
A0A087DQZ6	ABC transporter permease	0,512011	0,61843
A0A087DQ24	Glutamine synthetase	0,261501	0,31967
A0A087DHM5	LacI-type transcriptional regulator	0,0721425	-0,153404
A0A087DQY3	Transmembrane protein alanine and leucine rich	0,267331	0,631204
A0A087DSK4	Phosphohistidine phosphatase SixA	0,916638	2,23723
A0A087DNJ9	FHA domain-containing protein	1,21281	0,797417
A0A087DLP2	DUF2207 domain-containing protein	0,0092285	0,0357046
A0A087DMH7	Proteasome-associated protein	0,721912	0,625283
A0A087DMB4	Cystathionine beta-synthase	0	-3,01724
A0A087DKP3	Type I restriction enzyme endonuclease subunit	1,39924	0,64465
A0A087DT73	Oligo-1,6-glucosidase	0,924867	1,8698
A0A087DLG0	Transcriptional regulator	0,563872	1,95523
A0A087DHL3	Endonuclease NucS	0,816942	0,955524
A0A087DP06	beta-galactosidase	0,0231139	0,0337839
A0A087DKP2	AraC family transcriptional regulator	0,132024	0,25855
A0A087DHL4	peptidylprolyl isomerase	1,15647	0,668845
A0A087DNT7	Twitching motility protein	0,254205	-0,544332
A0A087DLX8	tRNA pseudouridine synthase A	0	0,845946
A0A087DMC1	Deoxyguanosinetriphosphate triphosphohydrolase-like protein	0,44529	0,794928
A0A087DL88	Putative phage infection protein	0,157984	0,273014
A0A087DLR1	Phosphate transporter ATP-binding protein	0,0354705	-0,0411409
A0A087DNJ1	ATP-dependent DNA helicase	0,0435546	0,0523326
A0A087DNU3	Organophosphate reductase	0	0,875203
A0A087DL78	Oxidoreductase	1,50522	-0,89066
A0A087DRI1	Cobalt import ATP-binding/permease protein cbi	0,635067	0,814634
A0A087DML0	GlutamateABC transporter substrate-binding protein	0,139396	0,207632
A0A087DL13	Sortase	0,00865856	-0,011164
A0A087DLD0	LacI-type transcriptional regulator	0,949867	0,581938
A0A087DT11	Pullulanase	0,74195	1,67501
A0A087DKX0	non-specific serine/threonine protein kinase	0,775159	0,272285
A0A087DKB6	UvrABC system protein B	0,565906	2,24145
A0A087DHH4	Glutamyl-Q tRNA(Asp) synthetase	0,217525	0,22406
A0A087DSB7	Shikimate 5-dehydrogenase	0	0,384843
A0A087DSC3	Haloacid dehalogenase	0,177481	-0,11837
A0A087DM54	Beta-1,4-xylosidase	0,625904	-1,14936
A0A087DMN6	Histidine kinase sensor of two-component system protein	0,020438	0,0338097
A0A087DML9	ATP-dependent Clp protease ATP-binding subunit ClpX	0,133667	0,370732
A0A087DT83	Calcium-transporting ATPase	0,107499	-0,149626

A0A087DP08	Glutamatecysteine ligase	0	-0,752362
A0A087DNX2	Aminotransferase	0,0238357	-0,0543722
A0A087DKL3	Septum formation initiator family protein	0,131582	0,30368
A0A087DQB5	DUF262 domain-containing protein	0,490829	-1,0115
A0A087DNN7	Low molecular weight protein-tyrosine-phosphatase	0	0,685852
A0A087DNM5	Protease II	0,243472	0,650831
A0A087DHN0	ABC transporter ATP-binding protein	0,257966	-0,922304
A0A087DT15	Putative oligo-1,6-glucosidase	0,651913	1,8179
A0A087DQG5	DUF218 domain-containing protein	0,201425	0,504964
A0A087DMC5	Translation elongation factor	0,596502	0,677747
A0A087DNZ2	MarR-type transcriptional regulator	0	-1,48176
A0A087DL60	ABC transporter	0,643152	1,15948
A0A087DL32	Cation-transporting ATPase V	0,333146	-0,498075
A0A087DLR3	Putative permease	0,283382	-0,311697
A0A087DMA7	Type III pantothenate kinase	0,715704	3,1684
A0A087DMI9	von Willebrand factor A	NaN	0
A0A087DHF5	UDP-galactopyranose mutase	0	-2,28861
A0A087DSB6	UvrABC system protein C	0	-0,424734
A0A087DNK4	Adenine DNA glycosylase	0	-0,27466
A0A087DLH4	TetR family transcriptional regulator	0,913806	-1,54301
A0A087DSR7	DNA 3'-5' helicase	0,302123	0,468421
A0A087DNW2	endopeptidase La	0	NaN

Tabla S4.3. Proteinas totales identificadas para la cepa **ATCC 314**. Se visualizan además los valores obtenidos para -log p y el *fold change*. Las siglas NaN significan *Not a number*. Se encuentran sombreadas las proteínas sub y sobreexpresadas identificadas.

Código	Descripción	-Log valor p	Fold change
Q5FL51	Glyceraldehyde-3-phosphate dehydrogenase	0,172904	0,0912412
Q5FKG5	Pyruvate kinase	0,81118	-0,198831
Q5FKM6	Enolase	1,92788	0,398802
Q5FLS6	Aldehyde-alcohol dehydrogenase	0,266114	-0,217527
Q5FKR8	Elongation factor Tu	0,345788	0,146317
Q5FL50	Phosphoglycerate kinase	0,921765	-0,264548
Q5FHW6	ATP-dependent protease	0,804454	0,201127
Q5FMB0	L-lactate dehydrogenase 1	0,142704	0,0810725
Q5FIR0	Fructose-bisphosphate aldolase	0,467146	0,0716375
P35829	S-layer protein	0,149093	-0,282836
Q5FIM1	Glycerol-3-phosphate ABC transporter	0,992408	0,501444
Q93G07	Chaperonin GroEL	1,10487	-0,643978
Q5FL04	Glucose-6-phosphate isomerase	0,620116	0,111757
Q5FM92	Elongation factor G	2,04079	-0,366634
Q5FIS0	Foldase protein PrsA	0,949237	0,41302
Q5FLY7	Oxalyl-CoA decarboxylase	0,776265	-0,210103
Q5FMW5	D-lactate dehydrogenase	0,932713	0,443019
	Adenosylcobalamin-dependent ribonucleoside-triphosphate		
Q5FMX8	reductase	0,0332085	0,0409075
Q5FJ04	Glutamine synthetase	1,08742	-0,830124
Q5FM89	50S ribosomal protein L4	0,123646	-0,134527
Q5FMI0	Inosine-5'-monophosphate dehydrogenase	0,699646	-0,430569
Q5FM87	50S ribosomal protein L2	0,00623629	0,00790024
Q5FM74	30S ribosomal protein S5	0,0992387	0,0992654
Q5FKF4	GTPase Der	0,381508	0,362647
Q5FLA5	Phosphoenolpyruvate-protein phosphotransferase	0,551777	-0,148199
Q5FM97	DNA-directed RNA polymerase subunit beta	0,800261	-1,06071
Q5FKR7	Trigger factor	0,0149062	-0,00405121
Q5FM76	50S ribosomal protein L6	0,416906	0,0587527
Q5FM90	50S ribosomal protein L3	0,59581	-0,48277
Q5FM59	50S ribosomal protein L13	0,0650324	0,00844955
Q5FLL0	Aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B	0,592569	-0,221313
Q5FJM3	30S ribosomal protein S2	0,0236521	-0,0126324
Q5FM94	30S ribosomal protein S12	0,459331	0,387911
Q5FKY0	ATP synthase subunit beta	0,111337	0,0692444
Q5FI23	Aminopeptidase	2,4045	-0,695227
Q5FIW3	ThreoninetRNA ligase	0,786624	-0,303862
Q5FM23	50S ribosomal protein L11	0,0628849	0,05675
Q5FM22	50S ribosomal protein L1	0,719458	0,502577

Q5FLA7	ATP-dependent Clp protease ATP-binding subunit	0,216573	-0,183931
Q5FKG6	ATP-dependent 6-phosphofructokinase	0,667562	0,237675
Q5FM12	50S ribosomal protein L/L12	0,146442	-0,0849686
Q5FM77	30S ribosomal protein S8	1,02213	0,390648
Q5FM67	30S ribosomal protein S13	0,060143	-0,0263042
Q5FLL1	Glutamyl-tRNA(Gln) amidotransferase subunit A	1,3175	-0,249975
Q5FL49	Triosephosphate isomerase	0,0593226	-0,0483449
Q5FM78	50S ribosomal protein L5	0,208651	0,188514
Q5FM84	30S ribosomal protein S3	0,452107	0,332101
Q5FJN0	ProlinetRNA ligase	1,28861	-0,241365
Q5FM96	DNA-directed RNA polymerase subunit beta'	0,903387	-0,885808
Q5FKY2	ATP synthase subunit alpha	0,0220811	0,0155258
Q5FLN0	SIpX	0,11057	-0,19683
Q5FM91	30S ribosomal protein S10	0,332655	0,516138
Q5FL76	Ribosome hibernation promoting factor	0,524703	0,460505
Q5FKX2	30S ribosomal protein S4	0,0660784	0,0736834
Q84BU4	Chaperone protein DnaK	2,15207	-0,306338
Q5FJK8	50S ribosomal protein L19	0,0967393	-0,0632992
Q5FKF3	DNA-binding protein HU	1,03108	-0,354026
Q5FKF5	30S Ribosomal protein S1	0,0965486	0,0714302
Q5FM88	50S ribosomal protein L23	0,217319	0,213395
Q5FL27	Phospho-beta-galactosidase II	2,25393	-0,9411
Q5FHV1	D-alanineD-alanyl carrier protein ligase	0,828401	-0,272818
Q5FIW9	50S ribosomal protein L20	0,307834	-0,156636
Q5FM64	50S ribosomal protein L1	0,170881	0,354478
Q5FM75	50S ribosomal protein L18	0,0523379	-0,0286401
Q5FJF9	50S ribosomal protein L21	0,279263	0,124647
Q5FK05	Probable manganese-dependent inorganic pyrophosphatase	0,917296	0,0896034
Q5FKM5	Uncharacterized protein	0,418158	0,18561
Q5FM93	30S ribosomal protein S	0,11029	-0,117559
Q5FM86	30S ribosomal protein S19	0,0534041	0,0496031
Q5FKW1	Cell shape-determining protein MreB	0,135072	0,085748
Q5FMT9	Putative heat shock related serine protease	0,104823	0,0662346
	Glutaminefructose-6-phosphate aminotransferase		
Q5FLS5	[isomerizing]	1,74222	-0,409992
Q5FHR5	Copper-transporting ATPase	0,000277674	0,000208537
Q5FK38	Phosphoenolpyruvate carboxylase	0,183366	-0,1785
Q5FKX5	Universal stress protein	1,08643	0,384256
Q5FMJ3	2,3-bisphosphoglycerate-dependent phosphoglycerate mutase	0,663114	0,128361
Q5FJQ3	Cysteine synthase	0,55039	0,382582

Q5FKK3	[Citrate [pro-3S]-lyase] ligase	1,90842	0,626685
Q5FM98	ATPase	0,17276	-0,13511
Q5FKD8	ATP-dependent protease ATPase subunit HsIU	0,568985	0,325521
Q5FMA0	LysinetRNA ligase	0,739433	-0,342229
Q9RGY8	Uracil phosphoribosyltransferase	0,771238	0,368842
Q5FM15	Putative receptor	0,309897	0,0857442
Q5FME6	CTP synthase	1,65974	-0,343529
Q5FMC0	Serine hydroxymethyltransferase	1,15182	-0,40244
Q5FLW6	AlaninetRNA ligase	1,27733	-0,495515
Q5FL70	Glycerol-3-phosphate dehydrogenase [NAD(P)+]	0,00319894	0,00148265
Q5FMB1	CBS domain-containing protein	0,130347	-0,0520725
Q5FJX3	AsparaginetRNA ligase	0,437694	-0,268658
Q5FIQ9	ArgininetRNA ligase	1,34734	-0,357217
Q5FIG3	Exodeoxyribonuclease	0,375548	-0,169169
Q5FHR7	Cupredoxin_1 domain-containing protein	2,22532	0,61166
Q5FIU3	Putative membrane protein	2,15512	0,889891
Q5FMF5	Ribose-phosphate pyrophosphokinase	0,224888	-0,193233
Q5FLF9	Glycerol-3-phosphate ABC transporter	1,42334	0,856373
Q5FJM4	Elongation factor Ts	0,327978	0,250282
Q5FMS6	Uncharacterized protein lemA	0,357295	0,241917
Q5FJN6	Translation initiation factor IF-2	1,80813	-0,625642
Q5FMG6	MethioninetRNA ligase	0,74194	-0,43637
Q5FM66	30S ribosomal protein S11	0,276926	-0,268291
Q5FN05	50S ribosomal protein L9	0,559057	-0,272727
Q5FLW8	Uncharacterized protein	1,07334	-0,327084
Q5FJK0	Dipeptidase	0,015746	0,0096995
Q5FMP2	Phosphoribosyl pyrophosphate synthase	0,498922	-0,22143
Q5FKT1	50S ribosomal subunit assembly factor BipA	0,917244	-0,481678
Q5FIY9	L-LDH	0,753703	-0,364824
Q5FI97	Putative_PNPOx domain-containing protein	0,381275	-0,230448
Q9RGY5	ATP synthase subunit b	0,177257	0,0749912
Q5FM72	50S ribosomal protein L15	0,601547	-0,272469
Q5FKK0	Citrate lyase alpha chain	3,17077	0,819637
Q5FHQ7	Pyruvate oxidase	0,211443	0,169496
Q5FMI2	Oligopeptide binding protein	0,894121	0,976111
Q5FJ08	Uncharacterized protein	0,775872	0,448842
Q5FLE5	Xylulose-5-phosphate-fructose phosphoketolase	0,238899	-0,236376
Q5FM85	50S ribosomal protein L22	0,220704	0,228399
Q5FJK5	30S ribosomal protein S16	0,253233	-0,663059

Q5FM65	DNA-directed RNA polymerase subunit alpha	0,166766	-0,103864
Q5FI54	UDP-N-acetylmuramyl-tripeptide synthetase	2,50891	-0,614225
Q5FI48	Ribosome-binding ATPase YchF	0,520548	0,204812
Q5FMH5	Aminopeptidase	2,34045	-0,565791
Q5FLY8	Formyl-CoA:oxalate CoA-transferase	0,336599	-0,392974
Q5FJL9	Neutral endopeptidase	1,79305	-0,719421
Q5FLW1	Thioredoxin	0,0973787	-0,083896
Q5FKW5	ValinetRNA ligase	0,734944	-0,446521
Q5FN14	Beta sliding clamp	0,42117	-0,115967
Q5FKQ7	Aminotransferase	1,60538	0,53594
Q5FIS8	UDP-N-acetylmuramateL-alanine ligase	0,720691	-0,13616
Q5FMK8	Neutral endopeptidase	2,02328	-0,510118
Q5FJI5	Dihydroacetone kinase	0,10997	0,0576528
Q5FJN9	Riboflavin biosynthesis protein	0,367339	0,203629
Q5FKU9	Cell division protein FtsZ	0,16921	0,111788
Q5FJB1	NAD(P)-bd_dom domain-containing protein	0,0195854	-0,020244
Q5FKK1	Citrate lyase subunit beta	1,77671	1,16875
Q5FM35	GlutamatetRNA ligase	0,0785165	-0,074838
Q5FM39	Aminopeptidase	0,182811	-0,116611
Q5FLX0	Glucose-6-phosphate 1-dehydrogenase	0,20276	0,146629
Q5FII2	ABC transporter ATP-binding protein	0,881577	0,691224
Q5FJV0	ABC transporter ATP binding protein	1,02301	0,658422
Q5FIA4	ABC transporter ATPase protein	0,162704	-0,207973
Q5FIL7	Multiple sugar-binding ABC-transporter ATPase protein	0,366934	0,431279
Q5FI90	PTS system fructose-specific enzyme II	0,231795	-0,264772
Q5FJR9	Pyridine mercuric reductase	0,29787	-0,462506
Q5FJC6	Xaa-Pro dipeptidyl-peptidase	0,877924	-0,604528
Q5FIZ4	Predicted N-acetylglucosamine kinase	1,19775	0,451638
Q5FKA2	Oxidoreductase	0,0710314	0,0584456
Q5FJU0	GlycinetRNA ligase beta subunit	0,643506	-0,194162
Q5FML5	Asn synthetase	0,271768	0,10774
Q5FML4	ATP-grasp domain-containing protein	0,121405	0,0805302
Q9RGY2	ATP synthase gamma chain	0,0181028	-0,0140133
Q5FKH9	Glyoxylate reductase	0,28967	-0,142539
Q5FIC7	Tyrosine-protein kinase CpsD	1,07348	0,600427
Q5FHY5	Adenylosuccinate lyase	0,140755	0,116345
Q5FL35	Phosphoglucosamine mutase	0,198808	-0,0647043
Q5FLZ3	tRNA N6-adenosine threonylcarbamoyltransferase	0,399069	0,258396
Q5FLC0	UTPglucose-1-phosphate uridylyltransferase	0,281436	0,188375

Q5FKU5	IsoleucinetRNA ligase	1,49092	-0,672135
Q5FJK4	Signal recognition particle protein	0,00339024	-0,00290426
Q5FL62	Phosphoglucomutase	0,63761	0,596427
Q5FJH5	Methionyl-tRNA formyltransferase	0,240845	-0,128103
Q5FIQ0	Putative mucus binding protein	0,480739	-1,32365
Q5FJG2	Elongation factor P 2	0,758876	-0,561224
Q5FJT3	30S ribosomal protein S21	0,952464	0,663951
Q5FLM2	Nicotinate phosphoribosyltransferase	0,235006	0,122164
Q5FKV3	UDP-N-acetylmuramoylalanineD-glutamate ligase	0,0740175	-0,0278619
Q5FL84	Putative transcriptional regulator	0,715209	0,608804
Q5FKH2	Oxidoreductase short chaindehydrogenase-reductase	0,369048	-0,260001
Q5FLV4	Uncharacterized protein	0,375381	-0,275198
Q5FIW7	Translation initiation factor IF-3	1,4746	-0,417859
Q5FMH4	Heat shock low molecular weight	0,000788868	-0,000518163
Q5FKR6	ATP-dependent Clp protease ATP-binding subunit ClpX	0,432342	0,298388
Q5FL54	Uncharacterized protein	0,301302	-0,133849
Q5FL22	Probable transcriptional regulatory protein LBA033	0,504595	0,274783
Q5FJT9	GlycinetRNA ligase alpha subunit	0,567632	0,342954
Q5FL58	Nucleotide-binding protein LBA0691	0,800373	0,273144
Q5FMB6	50S ribosomal protein L31 type B	0,01936	-0,023517
Q5FHY4	Adenylosuccinate synthetase	0,31641	0,125846
Q5FL82	Protein RecA	0,564405	0,327582
Q5FMI7	Putative fibronectin domain	0,552513	0,192395
Q5FKI3	Aminotransferase	0,0692588	0,0350901
Q5FHU8	Cadmium efflux ATPase	1,38941	-0,510349
Q5FJU2	RNA polymerase sigma factor SigA	0,139836	-0,04879
Q5FLW7	RNA helicase	0,584903	-0,349266
Q5FMH0	TryptophantRNA ligase	0,214614	0,177197
Q5FI44	Chromosome partitioning protein	0,12078	0,0810655
Q5FJT7	GTPase Era	0,694476	-0,189807
Q5FKD0	Aminoacyl-histidine dipeptidase	0,313569	-0,239044
Q5FLZ5	Putative glycoprotein endopeptidase	0,235729	0,0967655
Q5FIC4	GTPase HflX	0,0958999	-0,117233
Q5FM83	50S ribosomal protein L16	0,66708	0,104749
Q5FMF6	Cell separation protein	0,0245549	0,0680936
Q5FM73	50S ribosomal protein L30	0,329947	-0,141986
Q5FL72	HPr kinase/phosphorylase	0,0224684	-0,012593
Q5FIC6	Capsular polysaccharide biosynthesis protein CpsC	0,918714	0,627679
Q5FL55	ATP-dependent Clp protease proteolytic subunit	0,209394	0,0847537

Q5FIP3	LeucinetRNA ligase	2,25631	-0,598286
Q5FI89	Tagatose-6-phosphate kinase	0,496265	-0,476638
Q5FLL3	Uncharacterized protein	0,128162	0,168502
Q5FMI4	Aminopeptidase	0,317067	0,23451
Q5FMD6	GMP synthase [glutamine-hydrolyzing]	0,531959	-0,161601
Q5FLL5	ATP-dependent DNA helicase	0,411378	0,39481
Q5FMA3	ATP-dependent zinc metalloprotease FtsH	0,0763318	0,0782255
Q5FJI4	Alkaline shock protein	0,0712363	0,0745347
Q5FN03	Putative alkylphosphonate ABC transporter	1,60275	1,24956
Q5FM70	Adenylate kinase	0,0222679	-0,0108376
Q5FL29	Transcription antiterminator	0,310666	-0,311017
Q5FJI3	50S ribosomal protein L28	0,0569487	0,155729
Q5FKS0	Ribonuclease J	1,10319	-0,338435
Q5FJM5	Uridylate kinase	0,0888258	0,0837301
Q5FKL0	Fumarate hydratase class II	0,614794	0,319465
Q5FKW9	Probable tRNA sulfurtransferase	0,337732	-0,118434
Q5FLP2	ABM domain-containing protein	0,151204	-0,0529658
Q5FJQ6	Putative lactocepin S-layer protein	0,728391	0,394294
Q5FL75	Protein translocase subunit SecA	0,155114	0,118861
Q5FIY0	Two-component system regulator	0,0473127	0,00922139
Q5FKV0	Cell division protein FtsA	0,48762	0,356159
Q5FL15	Acetate kinase	0,194245	0,0659402
Q5FJJ4	Oligopeptide ABC trasporter substrate binding protein	1,14966	0,958393
Q5FM13	50S ribosomal protein L10	0,425698	0,48568
Q5FME4	Dipeptidase	0,133218	-0,104827
Q5FK23	Glutathione reductase	0,0307905	-0,0515855
Q5FJP9	Adenine phosphoribosyltransferase	0,336388	0,196831
Q5FIS7	Phenylalanyl-tRNA synthetase (Beta subunit)	0,000258145	0,000267665
Q5FKE2	DNA topoisomerase 1	0,444668	0,258369
Q5FMX9	DUF4430 domain-containing protein	1,1427	1,13492
Q5FKX8	Cell shape-determining protein MreB	0,266804	0,240183
Q5FN10	DNA gyrase subunit A	0,571059	-0,406035
Q5FLF7	Ribokinase	0,504464	-0,0704219
Q5FKM3	Bile salt hydrolase	0,413846	0,266785
Q5FKK7	L-lactate dehydrogenase 2	0,14466	-0,100672
Q5FKI4	AspartatetRNA ligase	0,425371	-0,215054
Q5FMM2	Alkylphosphonate ABC transporter	0,601914	0,612321
Q5FN08	Single-stranded DNA-binding protein	0,420943	0,265492
Q5FL45	Phosphate acetyltransferase	0,175878	-0,0624135

starvation inducible protein family reductase flavoprotein ional regulator-family	0,771189 0,697044 0,0667326	-0,140723 0,374901 0,0953515
	· ·	·
starvation inducible protein family	0,771189	-0,140723
protein LBA1592	0,106304	0,0886116
arrier protein HPr	0,229146	0,266237
erized protein	0,0861648	-0,0617332
ossreactive antigen	0,735144	-0,900443
racemase	0,164769	0,0550067
mal protein L14	0,192766	-0,295614
ninetRNA ligase beta subunit	2,68395	-0,652368
mal protein S6	0,0374799	-0,021733
ndent heat shock protease	0,254325	0,13414
ase R	0,255349	0,204168
al protein GlmU	1,18561	-0,279108
-type domain-containing protein	0,392054	0,331601
mal protein S9	0,131857	-0,167788
onin GroES	1,55328	-0,602127
r protein	0,0294812	-0,0394033
e subunit B	0,427719	-0,273489
me partition protein Smc	0,233088	0,446404
nosine kinase	0,671046	0,610657
mal protein L24	0,986521	-0,735264
ranscriptional regulator	0,331573	-0,285938
de transport protein	0,00777235	-0,00681814
peptidase F	0,0812479	-0,0440807
sin-related protein	0,328583	-0,110607
adenosyltransferase	0,0340778	-0,02384
n factor 4	1,70422	-0,50079
mal protein L2	0,14247	-0,216796
•	0,524415	0,305267
		-0,112776
		-0,00292651
		0,0719102
		-0,00519053
	· ·	-0,180521
<u>-</u>		-0,429667
	· ·	-0,447924 -0,428334
	factor 4 Idenosyltransferase Sin-related protein Deptidase F De transport protein Danscriptional regulator Dansler L24 Dosine kinase	-D-alanine ligase 0,834191 e 0,656653 A methyltransferase 1,02095 osidase II 0,00432857 ain release factor 1 0,190158 exylulose-5-phosphate synthase 0,00352038 amidotransferase 0,263664 ansferase system enzyme II 0,524415 mal protein L2 0,14247 a factor 4 1,70422 adenosyltransferase 0,0340778 sin-related protein 0,328583 opeptidase F 0,0812479 de transport protein 0,00777235 anscriptional regulator 0,331573 mal protein L24 0,986521 nosine kinase 0,671046

Q5FM82	50S ribosomal protein L29	0,116878	0,165881
Q5FLK9	Transcriptional regulator	0,06921	0,0334078
Q5FJT4	Uncharacterized protein	0,586515	0,466232
Q5FIE3	UTPglucose-1-phosphate uridylyltransferase	0,403202	0,200763
Q5FJQ5	Cardiolipin synthase	0,786425	0,535601
Q5FIS9	Putative serine protease	0,261957	-0,249886
Q5FJJ0	Oligopeptide ABC transporter (ATP-binding protein)	0,354315	0,229709
Q5FLV3	Xaa-pro dipeptidase	1,55835	-0,659764
Q5FIQ6	Serine-type D-Ala-D-Ala carboxypeptidase	0,468129	0,400133
Q5FIL6	Dipeptidase	0,663815	-0,337842
Q5FK32	Glucose 1-dehydrogenase	0,546241	-0,239298
Q5FIR5	Penicillin-binding protein	0,197992	-0,278175
Q5FIV7	DNA polymerase I	1,58019	-0,66456
Q5FI35	Dipeptidase	0,966954	-0,543429
Q5FMJ6	Oxidoreductase	0,256668	-0,199998
Q5FLK4	RNA methyltransferase	1,4219	-0,649403
0.551.00	CDP-diacylglycerolglycerol-3-phosphate 3-	0.400046	0.0705046
Q5FL83	phosphatidyltransferase	0,190816	-0,0705916
Q5FJV1	Uncharacterized protein	1,3726	0,670589
Q5FIC5	Exopolysaccharide biosynthesis protein	0,022265	0,038688
Q5FJN3	Transcription termination/antitermination protein NusA	0,256633	-0,101662
Q5FK48	S-ribosylhomocysteine lyase	1,10188	-0,67414
Q5FJJ9	Signal recognition particle receptor FtsY	0,792224	0,314865
Q5FKY8	Threonylcarbamoyl-AMP synthase	0,0812122	0,0235532
Q5FJI7	Phosphate acyltransferase	0,384298	0,216541
Q5FKV2	UDP-N-acetylglucosamineN-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase	0,124067	0,0967337
Q5FLW2	Endonuclease MutS2	0,252855	0,200967
POC1F9	Deoxyadenosine kinase	0,653465	0,823827
Q5FK06	Putative transcriptional regulator	0,88351	-0,183048
Q5FMF7	SIpA domain-containing protein	0,200782	-0,355787
Q5FIE2	UDP-N-acetyl glucosamine-2-epimerase	0,0835717	0,0333532
Q5FM24	Transcription termination/antitermination protein NusG	0,0692135	0,0794849
Q5FIZ6	Penicillin-binding protein	2,15636	1,1219
Q5FM81	30S ribosomal protein S1	0,0107467	-0,0238959
Q5FLL4	DNA ligase	0,502871	-0,146925
Q5FLV2	Catabolite control protein A	0,10338	0,119244
Q5FLA9	Peptide chain release factor 3	0,599833	-0,342836
Q5FLD2	Hypoxanthine phosphoribosyltransferase	0,148003	-0,111422
Q5FM34	CysteinetRNA ligase	1,10568	-0,505629

Q5FLL2	Aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit C	0,0623341	-0,0699978
Q5FLM1	NH(3)-dependent NAD(+) synthetase	0,330328	-0,244879
Q5FJG1	X-Pro dipeptidase	0,890166	-0,687368
Q5FJX6	Penicillin binding protein 1A	1,01786	0,776178
Q5FJ72	Predicted oxidoreductase	0,586076	0,402809
Q5FLY6	ABC transporter	0,153403	-0,159384
Q5FKI7	GTP diphosphokinase	0,334209	-0,0990225
Q5FLC8	ATP-dependent RNA helicase DEAD-DEAH box	0,542374	-0,166623
Q9RGY0	ATP synthase epsilon chain	1,30253	0,295102
Q5FKW0	Cell shape-determining protein MreC	0,314186	0,24404
Q5FKZ2	Lipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit MurT	0,182407	0,114775
Q5FI72	Response regulator	0,715594	0,455841
Q5FML7	Uncharacterized protein	0,125408	-0,0859394
Q5FL60	UvrABC system protein A	0,0321487	0,0734399
Q5FJM0	Cyclopropane-fatty-acyl-phospholipid synthase	0,382065	-0,191446
Q5FIX4	GTP-binding protein	0,1687	-0,0663185
Q5FMG1	Pur operon repressor	0,695857	-0,261757
Q5FLB8	Hydroxymethylglutaryl-CoA reductase	1,10468	1,9319
Q5FJ98	Peroxidase (Npx)	1,06097	-1,51755
Q5FKT4	Ribonuclease J	0,997867	-0,232712
Q5FME5	UDP-N-acetylglucosamine 1-carboxyvinyltransferase	0,304075	0,118813
Q5FIN8	S-adenosylmethionine synthase	0,116467	0,140036
Q5FLX1	Protein translocase	0,122915	0,220998
Q5FIM0	Lactamase_B domain-containing protein	0,16393	-0,114662
Q5FI45	Chromosome partitioning protein	0,124569	0,143766
Q5FKT2	Peptide deformylase	0,276177	0,174976
Q5FK98	Oxidoreductase	0,507472	-0,489264
Q5FMN0	Alpha-glucosidase	0,644044	-0,246796
Q5FLG5	Glutamine ABC transporter ATP-binding protein	0,247876	0,41842
Q5FLT3	PTS system mannose-specific EIIAB component	1,024	1,05027
Q5FLF6	Ribose-5-phosphate isomerase A	1,47139	0,228331
Q5FHV4	Protein DltD	0,418341	0,488846
Q5FKQ0	Nucleoside hydrolase	0,363635	0,278091
Q5FI52	Two-component response regulator	0,0867215	-0,0681642
Q5FHV8	Putative membrane protein	0,0852973	-0,0386829
Q5FL94	Putative isomerase	1,00109	-0,271376
Q5FI43	Ribosomal RNA small subunit methyltransferase G	0,249756	-0,170141
Q5FIY8	Transcription elongation factor GreA	0,167568	0,143307
Q5FJ01	Putative rhodanese-related sulfurtransferase	0,111225	-0,156948

Q5FI46	Chromosome partitioning protein	0,541192	0,278858
Q5FIR1	Glycolate oxidase	0,530537	0,412399
Q5FI50	ABC transporter ATPase protein	0,108883	-0,0471096
Q5FJJ2	Oligopeptide ABC transporter permease protein	0,526605	0,466232
Q5FL59	Uncharacterized protein	0,77654	0,452784
Q5FIM9	NAD-dependent aldehyde dehydrogenases	0,137253	0,151377
Q5FIS6	Thioredoxin	0,562096	-0,513117
Q5FJF6	Branched-chain-amino-acid aminotransferase	0,314266	-0,240927
Q5FKQ4	Uncharacterized protein	0,00842751	0,00648753
Q5FL16	Putative modification methylase	1,00456	-0,379485
Q5FLR9	Uncharacterized protein	0,702592	0,533771
Q5FID6	UDPgalactopyranose mutase	1,02308	0,403104
Q5FMH7	ATP binding protein	0,227698	-0,638098
Q5FIJ7	Oligopeptide ABC transporter substrate binding protein	0,63224	0,668509
Q9RGY4	ATP synthase subunit delta	1,04729	0,610065
Q5FIN5	SerinetRNA ligase	0,0982457	-0,17413
Q5FLG4	Glutamine-binding protein	0,618153	0,501598
Q5FLU9	Putative UDP-sugar hydrolase	0,326081	0,302648
Q5FKF2	Putative O-linked transferase	0,032972	0,0767994
Q5FMM4	Putative nucleotide-binding protein	0,604262	1,05297
Q5FL96	Myosin-crossreactive antigen	0,407258	-0,345385
Q5FKX0	Aminotransferase	0,0359597	0,022899
Q5FL34	Hydrolase of the HAD family	0,471766	-0,1837
Q5FMB4	DEAD-box ATP-dependent RNA helicase CshA	0,18133	-0,219929
Q5FL36	Uncharacterized protein	0,607243	0,476116
Q5FMB2	Alanine racemase	0,325387	-0,145984
Q84BU5	Protein GrpE	0,764724	-0,295642
Q5FIK4	Proline iminopeptidase	0,338902	-0,326077
Q5FIU1	Bacteriocin helveticin J	0,675029	-0,453986
Q5FMI6	TyrosinetRNA ligase	0,470636	-0,549819
Q5FJH3	DNA-directed RNA polymerase subunit omega	0,116617	0,113871
Q5FKR3	Aspartokinase	1,80556	1,09062
Q5FLM4	N-acetylglucosaminyldiphosphoundecaprenol N-acetyl-beta-D-mannosaminyltransferase	0,584073	-0,451339
Q5FKX1	Septation ring formation regulator EzrA	0,00132424	0,00229073
Q5FKS2	30S ribosomal protein S20	0,174111	-0,387241
Q5FL42	UDP-N-acetylenolpyruvoylglucosamine reductase	1,49511	1,18883
Q5FKL4	Cation-transporting atpase	0,113601	-0,130821
Q5FLT1	Mannose-specific PTS system component IID	0,139757	0,238772
Q5FLM0	P-type Ca(2+) transporter	0,64918	0,318565

Q5FKI8	Ribosomal protein L11 methyltransferase	0,0993746	-0,0631523
Q5FJS2	Acetyltransferase	0,105374	-0,0903327
Q5FID2	Uncharacterized protein	0,940193	0,643155
Q5FM21	Phosphate-binding protein	0,58038	0,583904
Q5FLB7	Hydroxymethylglutaryl-CoA synthase	0,187815	0,265804
Q5FM71	Protein translocase subunit SecY	0,957949	0,550983
Q5FII6	DNA helicase	0,173269	0,13927
Q5FK97	Putative surface layer protein	0,4764	-0,424131
Q5FI30	Hydrolase of alpha-beta family	0,0355185	-0,0685838
Q5FMQ2	Ribonuclease H	0,0143861	-0,00734965
Q5FKK6	Aminopeptidase	0,959579	0,582839
Q5FLS2	Bis(5'-nucleosyl)-tetraphosphatase [asymmetrical]	0,360976	-0,200545
Q5FMR1	Putative glutamine ABC transporter	0,453001	-0,313671
Q5FKV7	Ribosomal RNA small subunit methyltransferase H	0,0716567	0,0849584
Q5FMG3	Ribosomal RNA small subunit methyltransferase A	0,854791	-0,479551
Q5FLS3	Putative carboxymuconolactone decarboxylase	0,496572	0,386555
G1UB56	ATP synthase subunit c	0,0457688	0,0741711
Q5FKE5	Ribosome biogenesis GTPase A	0,107134	-0,167011
Q5FIJ4	Elongation factor P 1	0,063058	-0,0469812
Q5FLD3	Transport protein	0,192667	-0,174837
Q5FM16	Phosphate-specific transport system accessory protein PhoU	0,216387	0,147362
Q5FHT6	Putative lipoprotein A-antigen	0,829624	0,672913
Q5FMM1	Phosphonates import ATP-binding protein PhnC	0,0401733	0,0704746
Q5FLB3	RNA methyltransferase family	0,110399	-0,130606
Q5FMJ0	Transcriptional regulator	0,470832	-0,169344
Q5FKG9	2',3'-cyclic-nucleotide 2'-phosphodiesterase	0,711403	0,381648
Q5FI38	Putative oxidoreductase	0,449628	0,293187
Q5FKD7	Galactose mutarotase related enzyme	0,311389	0,243621
Q5FIB5	Uncharacterized protein	0,231897	0,213531
Q5FK08	DNA topoisomerase 4 subunit B	0,587081	0,420154
Q5FKH5	GTPase Obg	0,659524	0,515988
Q5FID3	Uncharacterized protein	1,22109	0,929087
Q5FHQ8	6-phosphogluconate dehydrogenase	0,955156	-0,785631
Q5FK51	Bile salt hydrolase	0,0670314	0,0874138
Q5FL69	Thioredoxin reductase	0,219916	-0,349107
Q5FIM5	Membrane protein	0,661422	-0,658053
Q5FL28	Phosphotransferase system enzyme II	0,430112	-0,455425
G1UB58	Msm operon repressor	0,326191	0,868688
Q5FIM3	Putative beta-lactamase	0,170585	-0,200231

Q5FJM6	Ribosome recycling factor Rrf	0,218728	-0,200583
Q5FKF6	Cytidylate kinase	0,0939783	0,0835997
Q5FJH6	16S rRNA (cytosine(96)-C(5))-methyltransferase	0,568824	-0,42745
Q5FLH4	Aminopeptidase I zinc metalloprotease	0,089691	0,0840181
Q5FID7	UDP-galactopyranose mutase	0,332377	0,251592
Q5FML0	Uncharacterized protein	0,178705	0,147557
Q5FJJ7	Ribonuclease 3	0,476467	0,444823
Q5FHZ9	Protein-tyrosine phosphatase	0,404548	0,462685
Q5FKG4	S1 motif domain-containing protein	0,167303	0,199625
Q5FLT2	Mannose-specific PTS system component IIC	0,252914	0,360591
Q5FLQ0	Serine-threonine protein phosphatase	0,0560021	-0,104661
Q5FKL6	Thymidylate synthase	0,00229472	-0,00130781
	tRNA uridine 5-carboxymethylaminomethyl modification		
Q5FHQ6	enzyme MnmG	1,13491	-0,738703
Q5FKB5	Secreted protein	0,576191	0,518656
Q5FIH2	Putative membrane protein	1,36706	0,602441
Q5FMI8	Putative glucan mod. protein	0,44851	-0,580566
Q5FJI9	Oligopeptide ABC transporter ATP-binding protein	0,00109556	-0,00171852
Q5FLZ1	Putative dehydrogenase	0,414598	-0,480422
Q5FJU8	Amino tripeptidase T	0,198537	-0,205809
Q5FKF9	Pseudouridine synthase	0,20128	0,25817
Q5FMK6	Uncharacterized protein	1,76879	-0,565132
Q5FKF0	CCA-adding enzyme	0,729785	0,924205
Q5FI40	Protein-tyrosine phosphatase	0,0163727	-0,0181115
Q5FKI5	HistidinetRNA ligase	0,475894	0,53755
Q5FLC2	Methionine aminopeptidase	0,0539074	-0,052295
Q5FMR5	Predicted hydrolase	1,04719	-0,587348
Q5FI53	Histidine kinase	0,195377	-0,299451
Q5FMY4	Dipeptidase	0,948437	-0,737738
Q5FIX9	Uncharacterized protein	0,861166	0,842815
Q5FI39	Putative oxidoreductase	0,0712501	0,109458
Q5FKE1	MethylenetetrahydrofolatetRNA-(uracil-5-)-methyltransferase TrmFO	0,219984	0,22272
Q5FMV1	Glycosyl transferase	0,137734	0,193079
Q5FHU9	Putative CBS domain containing protein	0,668368	0,736897
Q5FMS7	Protease HtpX homolog	0,189068	-0,240538
Q5FKX3	Uncharacterized protein	0,433274	0,353078
Q5FI05	Beta-phosphoglucomutase	0,26685	0,281307
Q5FIW0	Transcriptional repressor NrdR	0,306689	0,187194
Q5FKU0	tRNA-specific 2-thiouridylase MnmA	0,441727	0,44485

Q5FKM8	Uncharacterized protein	0,299057	-0,696925
Q5FIL9	Sugar ABC transporter	0,231227	-0,0792497
Q5FIN0	Putative deoxyribosyltransferase	0,253726	-0,586304
Q5FJ35	UDP-glucose 4-epimerase	0,647024	-0,363272
Q5FM07	DNA polymerase III subunit gamma/tau	0,405582	-0,506197
Q5FKI2	Coenzyme A biosynthesis bifunctional protein CoaBC	0,12446	0,215704
Q5FIY2	Putative family protein	0,0757106	-0,0969791
Q5FIK6	Uncharacterized protein	0,381484	0,494941
Q5FID4	Glycosyl transferase	0,451402	0,386545
Q5FKR1	2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-acetyltransferase	2,69951	1,75346
Q5FK81	Thiol peroxidase tpx	0,0651927	-0,107553
Q5FJY6	Carbamoyl-phosphate synthase pyrimidine-specific large chain	0,551173	0,558703
Q5FL81	Ribonuclease Y	0,104711	0,131358
Q5FIS5	tRNA (guanine-N()-)-methyltransferase	0,0251042	0,0393626
Q5FIM2	CorA-family cationic transporter	0,312233	-0,430772
Q5FIR9	CMP-binding factor	0,563645	0,358819
Q5FLU5	Protein family	0,350035	0,319765
Q5FJX1	3'-5' exonuclease DinG	0,494339	-0,704125
Q5FLW0	Large-conductance mechanosensitive channel	0,0500223	0,0999673
Q5FKI1	Reductase-dehydrogenase	0,963909	0,301126
Q5FIY4	rRNA methylase	0,279805	-0,393167
Q5FKQ6	Aspartate-semialdehyde dehydrogenase	0,366667	-0,391607
Q84BU3	Chaperone protein DnaJ	0,78792	0,671617
Q5FL85	3-oxoacyl-(Acyl-carrier protein) reductase	0,0703232	-0,0858879
Q5FMA8	Transcription-repair-coupling factor	0,565545	-0,789567
Q5FK49	Putative methionine synthase	0,835438	1,22631
Q5FMB5	UDP-N-acetylmuramoyl-tripeptideD-alanyl-D-alanine ligase	0,22183	-0,217857
Q5FMH6	ATP binding protein (oligopeptide ABC transporter)	0,139947	0,160254
Q5FLT9	Glycosyltransferase	0,0829577	-0,116376
Q5FJN7	Ribosome-binding factor A	0,187023	-0,140859
Q5FJ38	Transcription repressor of beta-galactosidasegene	0,509662	0,27058
Q5FLS1	Phosphoenolpyruvate carboxykinase (ATP)	0,862407	0,510216
Q5FN01	Fructokinase	1,11506	1,02805
Q5FIS2	Histidine triad HIT family protein	0,991984	-0,50475
Q5FMM9	N-acetylglucosamine-6-P deacetylase	1,40361	-0,402341
Q5FME9	HD domain-containing protein	1,10327	-1,18897
Q5FJS6	Homoserine dehydrogenase	0,911761	0,467197
Q5FI04	Maltose phosphorylase	0,0361148	-0,0526498
Q5FIT0	Transcriptional regulator	0,994119	-0,552937

Q5FKQ9	4-hydroxy-tetrahydrodipicolinate synthase	0,182172	0,238398
Q5FLX5	DNA mismatch repair protein MutS	0,0789188	-0,0572383
Q5FN06	Cyclic-di-AMP phosphodiesterase	0,279155	-0,21357
Q5FLF4	Nucleoside hydrolase	0,119036	0,140518
Q5FJX5	Endonuclease III	0,545272	1,14878
Q5FMG8	TPM_phosphatase domain-containing protein	0,456735	0,626727
Q5FKK4	Putative hydrolase or acyltransferase	1,89301	1,54319
Q5FMF1	Transcriptional regulator	0,522793	0,942071
Q5FMI1	Peptide binding protein	0,706123	1,2623
Q5FML6	Metallophos domain-containing protein	0,117347	0,170886
Q5FHZ5	Phosphomethylpyrimidine kinase	0,528728	-0,435003
Q5FL52	Transcriptional regulator	0,402169	1,11842
Q5FKR5	Probable GTP-binding protein EngB	0,48268	0,4622
Q5FMM8	2-deoxyribosyltransferase	0,0262753	0,069664
Q5FLM6	Transcriptional regulator	0,345488	-0,511641
Q5FI31	Putative phosphoglycerate mutase	0,0309326	-0,0292784
Q5FLG3	Glutamine ABC transporter permease	0,581722	-0,53618
Q5FJY0	THUMP domain-containing protein	0,153431	-0,151478
Q5FKY9	Peptide chain release factor N(5)-glutamine methyltransferase	0,011952	0,0275332
Q5FLR5	NADPH-flavin oxidoreductase	1,11036	-0,769499
Q5FM18	Phosphate import ATP-binding protein PstB 1	0,0778965	0,13521
Q5FKG7	DNA-directed DNA polymerase	0,912927	-0,87859
Q5FLZ8	Ribosomal RNA small subunit methyltransferase I	0,20937	0,16276
Q5FJX0	ATP-dependent helicase/nuclease subunit A	0,251607	-0,315982
Q5FJG4	Transcriptional termination factor	0,36277	-0,331896
Q5FKZ1	Thymidine kinase	0,151722	-0,162524
Q5FMA2	33 kDa chaperonin	0,55911	-0,519685
Q5FMT8	Ribosomal RNA large subunit methyltransferase H	0,187086	-0,118409
Q5FMN2	Acetyl esterase	0,384639	-0,482844
Q5FHY0	Aspartateammonia ligase	1,29503	-1,32855
Q5FKC7	Aluminum resistance protein	0,0370924	-0,0380948
Q5FL61	UvrABC system protein B	0,0755082	-0,0781473
Q5FJH8	Non-specific serine/threonine protein kinase	0,82469	0,659817
Q5FHV5	Penicillin-binding protein	0,0981032	0,152348
Q5FL99	GTP pyrophosphokinase	1,02456	-0,866674
Q5FJZ1	Uncharacterized protein	0,120114	0,139676
Q5FML3	Anaerobic NTP reductase	0,391886	1,586
Q5FKP2	CsbD domain-containing protein	0,116343	0,774437
Q5FKB2	Trehalose operon transcriptional repressor	1,60971	-0,842788

Q5FLZ0	Transcriptional regulator	0,256642	0,220179
Q5FJW8	Mevalonate kinase	0,152215	-0,151884
Q5FJP7	Putative sortase	0,579709	0,844378
Q5FMS3	Fe-S_biosyn domain-containing protein	1,02982	-1,03326
Q5FI49	Uncharacterized protein	0,0205517	-0,0454547
Q5FIN2	Putative esterase	0,455063	-0,764191
Q5FIY6	PhenylalaninetRNA ligase alpha subunit	0,0374777	0,146831
Q5FK07	DNA topoisomerase 4 subunit A	0,00714877	0,0102291
Q5FKB8	Penicillin-binding protein	1,87111	1,35968
Q5FMG5	Uncharacterized protein	0,122478	-0,0890973
Q5FII3	ABC transporter permease protein	0,372688	0,504105
Q5FMF0	Uncharacterized protein	1,06464	-2,0205
Q5FMU3	Histidine kinase	0,404946	0,500585
Q5FJT2	Putative pyruvate phosphate dikinase regulatory protein	0,195416	-0,524291
Q5FLM3	Galactosyltransferase	0,190168	-0,236466
Q5FHW5	Putative cell surface hydrolase	0,380744	0,413003
Q5FME2	Transcriptional regulator raffinose operon	0,107203	-0,121436
Q5FKH6	UvrABC system protein C	0,113741	0,476594
Q5FM20	Phosphate transport system permease protein	0,550944	0,429059
Q5FMJ2	Pyrrolidone-carboxylate peptidase	0,165868	-0,159884
Q5FM10	MTS domain-containing protein	0,558325	-0,387987
Q5FI01	Acetate kinase	0,358617	0,262967
Q5FKU6	Cell-division initiation protein	0,823744	1,6691
Q5FIQ8	Putative cell surface protein	0,547804	0,432886
Q5FKD6	Uncharacterized protein	0,108887	0,308939
Q5FL65	Glycogen synthase	0,0369298	0,0478147
Q5FKH3	Ribonuclease Z	1,00428	1,21959
Q5FMG9	dCMP deaminase	0,0799336	-0,0986786
Q5FJZ3	Diaphanous-like protein	0,125038	-0,21004
Q5FLS4	Acetate kinase	0,000463228	0,0014178
Q5FI41	FAD:protein FMN transferase	0,718791	1,08452
Q5FL41	Spermidine/putrescine import ATP-binding protein PotA	0,29943	0,578577
Q5FMU4	Putative response regulator	0,182987	-0,309892
Q5FL64	Alpha-1,4 glucan phosphorylase	0,267331	0,466024
Q5FLF3	Transcriptional regulator	0,00569838	-0,0235653
Q5FKT8	Uncharacterized protein	0,60547	0,45688
Q5FLD4	Nitroreductase	0,572077	-0,848736
Q5FKN4	Phospho-beta-glucosidase	0,707751	-0,890212
Q5FMJ5	DNA polymerase	0,247857	-0,660529

Q5FIR8	AAA_2 domain-containing protein	0,866203	-0,803915
Q5FHR6	Cupredoxin_1 domain-containing protein	0,159361	-0,518267
Q5FJE2	Lipase	0,487076	-0,963811
Q5FMX1	Putative ABC transporter substrate binding protein	0,565349	0,558783
Q5FJE6	Lysin	0,493916	-0,591105
Q5FL87	Putative protease	0,0347711	0,0751139
Q5FHW7	Signal peptidase I	0,00841755	0,0579278
Q5FJW5	Isopentenyl-diphosphate delta-isomerase	0,9778	0,535999
Q5FJY7	Rqc2 homolog RqcH	0,218566	-0,590747
Q5FIT9	Putative surface protein	0,203969	-0,362584
Q5FKX4	Chromosomal segregation helicase	0,678269	1,80574
Q5FI94	ABC transporter periplasmatic component	0,0370433	0,180221
Q5FKF7	Putative N-acetylmuramidase	0	NaN
Q5FJH0	DNA repair protein RecN	0,107302	0,268662
Q5FIU0	Aminopeptidase	0,849692	0,404898
Q5FJQ7	Cation-transporting ATPase	0,76484	-1,08504
Q5FM60	tRNA pseudouridine synthase A	0,471222	-0,532266
Q5FN15	Chromosomal replication initiator protein DnaA	0,151779	0,377415
Q5FJP8	Single-stranded-DNA-specific exonuclease RecJ	0,118449	-0,398932
Q5FI26	Secreted protein	0,239595	-0,897943
Q5FM46	4-methyl-5(B-hydroxyethyl)-thiazole monophosphatebiosynthesis	0,778911	-2,31041
Q5FKV5	Penicillin-binding protein	0,528275	-0,88986
Q5FMU1	Uncharacterized protein yycl	0,20134	-0,94909
Q5FKJ2	Transcriptional regulator	0,146074	0,42427
G1UB46	Sucrose PTS II ABC	0,642432	-2,64707
Q5FLP5	Putative surface exclusion protein	0,0906941	0,6535
Q5FL93	H+-K+-exchanging ATPase	0	-1,68242
Q5FIH5	Asparaginase	0,197073	-0,734178
Q5FMJ4	Uncharacterized protein	0,342887	-1,07306
Q5FJ23	D-ribose-binding protein	0,292462	0,70166
Q5FL88	DNA translocase FtsK	0,22537	0,896317
Q5FMQ1	Putative extracellular protein	0,562832	0,685024
Q5FJL8	ABC transporter ATP binding and permease protein	0	2,44891
Q5FJS5	Threonine synthase	0	NaN
Q5FIR3	Glycerol uptake facilitator protein	0,453322	0,895266
Q5FJF7	Putative V-type sodium ATP synthase subunit	0,291096	-0,52049
Q5FMM6	Protein tyrosine phosphatase	0,671693	0,89611
Q5FMW4	Exodeoxyribonuclease A	0	NaN
Q5FM50	Methylase	0,120158	-0,247214

Q5FIP7	Fibrinogen-binding protein	0	NaN
Q5FID1	Glycosyltransferase	0,691214	1,27655
Q5FII4	Phosphoglycerate mutase	0,287746	-0,430353

Apéndice-Capítulo 5

Para obtener la dosis de AC equivalente en humanos, se utilizó la conversión descripta por Nair y colaboradores (Nair and Jacob 2016), en la cual se multiplica la dosis en ratones por el factor 0,081, considerando además 60 kg como peso promedio en humanos. Entonces:

- Dosis inicial:

 $2 \text{ mg/kg} \times 0.081 = 0.162 \text{ mg/kg} \times 60 \text{ kg (peso promedio)} = 9.7 \text{ mg AC}$

- Dosis de mantenimiento:

 $1 \text{ mg/kg} \times 0.081 = 0.081 \text{ mg/kg} \times 60 \text{ kg} = 4.9 \text{ mg AC}$

El factor de conversión está basado en el área de superficie corporal utilizando datos extraídos de la Administración de Alimentos y Medicamentos (FDA) (Food and Drug Administration 2005)